Transitions between subsets of differentiating hematopoietic cells are widely regarded as unidirectional . Here, we introduce clonal phylogenetic tracer (CP-tracer) that sequentially introduces genetic barcodes, enabling high-resolution analysis of ~100,000 subclones derived from ~500 individual hematopoietic stem cells (HSC). This revealed previously uncharacterized HSC functional subsets and identified bidirectional fate transitions between myeloid-biased and lineage-balanced HSC.
View Article and Find Full Text PDFThis investigation establishes a system of gold nanoparticles that show good colloidal stability as an X-ray computed tomography (XCT) contrast agent under soil conditions. Gold nanoparticles offer numerous beneficial traits for experiments in biology including: comparatively minimal phytotoxicity, X-ray attenuation of the material and the capacity for functionalization. However, soil salinity, acidity and surface charges can induce aggregation and destabilize gold nanoparticles, hence in biomedical applications polymer coatings are commonly applied to gold nanoparticles to enhance stability in the environment.
View Article and Find Full Text PDFThe growth of rice in submerged soils depends on its ability to form continuous gas channels-aerenchyma-through which oxygen (O ) diffuses from the shoots to aerate the roots. Less well understood is the extent to which aerenchyma permits venting of respiratory carbon dioxide (CO ) in the opposite direction. Large, potentially toxic concentrations of dissolved CO develop in submerged rice soils.
View Article and Find Full Text PDFSoil adjacent to roots has distinct structural and physical properties from bulk soil, affecting water and solute acquisition by plants. Detailed knowledge on how root activity and traits such as root hairs affect the three-dimensional pore structure at a fine scale is scarce and often contradictory. Roots of hairless barley (Hordeum vulgare L.
View Article and Find Full Text PDFThe rhizosphere is a zone of fundamental importance for understanding the dynamics of nutrient acquisition by plant roots. The canonical difficulty of experimentally investigating the rhizosphere led long ago to the adoption of mathematical models, the most sophisticated of which now incorporate explicit representations of root hairs and rhizosphere soil. Mathematical upscaling regimes, such as homogenisation, offer the possibility of incorporating into larger-scale models the important mechanistic processes occurring at the rhizosphere scale.
View Article and Find Full Text PDFIn this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms.
View Article and Find Full Text PDFThe use of in vivo X-ray microcomputed tomography (μCT) to study plant root systems has become routine, but is often hampered by poor contrast between roots, soil, soil water, and soil organic matter. In clinical radiology, imaging of poorly contrasting regions is frequently aided by the use of radio-opaque contrast media. In this study, we present evidence for the utility of iodinated contrast media (ICM) in the study of plant root systems using μCT.
View Article and Find Full Text PDFRoot hairs are important sites for nutrient uptake, especially in P limiting conditions. Here we provide first insights into root hair development for the diverse root types of rice grown under different conditions, and show the first in situ images of rice root hairs in intact soil. Roots of plants grown in upland fields produced short root hairs that showed little responsiveness to P deficiency, and had a higher root hair density in the high P condition.
View Article and Find Full Text PDFIn this study, we developed a spatially explicit model for nutrient uptake by root hairs based on X-ray computed tomography images of the rhizosphere soil structure. This work extends our previous work to larger domains and hence is valid for longer times. Unlike the model used previously, which considered only a small region of soil about the root, we considered an effectively infinite volume of bulk soil about the rhizosphere.
View Article and Find Full Text PDFBackground: Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
October 2014
The title compounds, [Mo(C5H5)(COCH3)P(CH3)2(C6H5)(CO)2], (1), and [Mo(C5H5)(COCH3)P(C2H5)(C6H5)2)(CO)2], (2), have been prepared by phosphine-induced migratory insertion from [Mo(C5H5)(CO)3(CH3)]. Both complex mol-ecules exhibit a four-legged piano-stool geometry with trans-disposed carbonyl ligands along with Mo-P bond lengths and C-Mo-P angles that reflect the relative steric pressure of the respective phosphine ligand. The structure of compound (1) exhibits a layered arrangement parallel to (100).
View Article and Find Full Text PDF· Root hairs are known to be highly important for uptake of sparingly soluble nutrients, particularly in nutrient deficient soils. Development of increasingly sophisticated mathematical models has allowed uptake characteristics to be quantified. However, modelling has been constrained by a lack of methods for imaging live root hairs growing in real soils.
View Article and Find Full Text PDF