Publications by authors named "Samuel Kenny"

In this article, we investigate an active plasmonic element which will act as the key building block for future photonic devices. This element operates by modulating optical constants in a localised fashion, thereby providing an external control over the strength of the electromagnetic near field above the element as well as its far-field response. A dual experimental approach is employed in tandem with computational methods to characterise the response of this system.

View Article and Find Full Text PDF
Article Synopsis
  • Neural circuit function is influenced by how neurons connect and the strength of these connections, which involves postsynaptic sensitivity and presynaptic release probability (P).
  • QuaSOR, a super-resolution imaging method, was developed to measure P at hundreds of synapses simultaneously, focusing on the Drosophila larval neuromuscular junction (NMJ).
  • The study reveals that P varies among synapses linked to the same axon and identifies Complexin as a key protein that modulates both spontaneous and evoked neurotransmitter release, affecting transmission quality through the balance of different presynaptic proteins.
View Article and Find Full Text PDF

The structure and mechanics of many connective tissues are dictated by a collagen-rich extracellular matrix (ECM), where collagen fibers provide topological cues that direct cell migration. However, comparatively little is known about how cells navigate the hyaluronic acid (HA)-rich, nanoporous ECM of the brain, a problem with fundamental implications for development, inflammation, and tumor invasion. Here, we demonstrate that glioblastoma cells adhere to and invade HA-rich matrix using microtentacles (McTNs), which extend tens of micrometers from the cell body and are distinct from filopodia.

View Article and Find Full Text PDF

Large coat protein complex II (COPII)-coated vesicles serve to convey the large cargo procollagen I (PC1) from the endoplasmic reticulum (ER). The link between large cargo in the lumen of the ER and modulation of the COPII machinery remains unresolved. TANGO1 is required for PC secretion and interacts with PC and COPII on opposite sides of the ER membrane, but evidence suggests that TANGO1 is retained in the ER, and not included in normal size (<100 nm) COPII vesicles.

View Article and Find Full Text PDF

Ion channels control sperm navigation within the female reproductive tract and, thus, are critical for their ability to find and fertilize an egg. The flagellar calcium channel CatSper controls sperm hyperactivated motility and is dependent on an alkaline cytoplasmic pH. The latter is accomplished by either proton transporters or, in human sperm, via the voltage-gated proton channel Hv1.

View Article and Find Full Text PDF

Under ambient conditions, the behavior of a solid surface is often dominated by a molecularly thin adsorbed layer (adlayer) of small molecules. Here we develop an optical approach to unveil the nanoscale structure and composition of small-molecule adlayers on glass surfaces through spectrally resolved super-resolution microscopy. By recording the images and emission spectra of millions of individual solvatochromic molecules that turn fluorescent in the adlayer phase, we obtain ~30 nm spatial resolution and achieve concurrent measurement of local polarity.

View Article and Find Full Text PDF

As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples.

View Article and Find Full Text PDF

To build the spindle at mitosis, motors exert spatially regulated forces on microtubules. We know that dynein pulls on mammalian spindle microtubule minus-ends, and this localized activity at ends is predicted to allow dynein to cluster microtubules into poles. How dynein becomes enriched at minus-ends is not known.

View Article and Find Full Text PDF

By recording the full fluorescence spectra and super-resolved positions of ∼10 individual polarity-sensing solvatochromic molecules, we reveal compositional heterogeneity in the membranes of live mammalian cells with single-molecule sensitivity and ∼30 nm spatial resolution. This allowed us to unveil distinct polarity characteristics of the plasma membrane and the membranes of nanoscale intracellular organelles, a result we found to be due to differences in cholesterol levels. Within the plasma membrane, we observed the formation of low-polarity, raft-like nanodomains upon cholesterol addition or cholera-toxin treatment, but found this nanoscale phase separation absent in native cells.

View Article and Find Full Text PDF

Autophagosomes are double-membrane vesicles generated during autophagy. Biogenesis of the autophagosome requires membrane acquisition from intracellular compartments, the mechanisms of which are unclear. We previously found that a relocation of COPII machinery to the ER-Golgi intermediate compartment (ERGIC) generates ERGIC-derived COPII vesicles which serve as a membrane precursor for the lipidation of LC3, a key membrane component of the autophagosome.

View Article and Find Full Text PDF

Microtentacles are thin, flexible cell protrusions that have recently been described and whose presence enhances efficient attachment of circulating cells. They are found on circulating tumor cells and can be induced on a wide range of breast cancer cell lines, where they are promoted by factors that either stabilize microtubules or destabilize the actin cytoskeleton. Evidence suggests that they are relevant to the metastatic spread of cancer, so understanding their structure and formation may lead to useful therapies.

View Article and Find Full Text PDF

The coat protein complex II (COPII) is essential for the transport of large cargo, such as 300-nm procollagen I (PC1) molecules, from the endoplasmic reticulum (ER) to the Golgi. Previous work has shown that the CUL3-KLHL12 complex increases the size of COPII vesicles at ER exit sites to more than 300 nm in diameter and accelerates the secretion of PC1. However, the role of large COPII vesicles as PC1 transport carriers was not unambiguously demonstrated.

View Article and Find Full Text PDF

Recent evidence suggests that autophagy facilitates the unconventional secretion of the pro-inflammatory cytokine interleukin 1β (IL-1β). Here, we reconstituted an autophagy-regulated secretion of mature IL-1β (m-IL-1β) in non-macrophage cells. We found that cytoplasmic IL-1β associates with the autophagosome and m-IL-1β enters into the lumen of a vesicle intermediate but not into the cytoplasmic interior formed by engulfment of the autophagic membrane.

View Article and Find Full Text PDF

By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

View Article and Find Full Text PDF