In this study, particle loading, polyfluorinated alkyl silanes (PFAS or FAS) content, superhydrophobicity, and crack formation for nanocomposite coatings created by the spray coating process were investigated. The formulations comprised hydrophobic silica, epoxy resin, and fluorine-free or FAS constituents. The effect of FAS content and FAS-free compositions on the silica and epoxy coatings' chemistry, topography, and wetting properties was also studied.
View Article and Find Full Text PDFThe most prevalent materials used in the Additive Manufacturing era are polymers and plastics. Unfortunately, these materials are recognized for their negative environmental impact as they are primarily nonrecyclable, resulting in environmental pollution. In recent years, a new sustainable alternative to these materials has been emerging: Reversible Covalent Bond-Containing Polymers (RCBPs).
View Article and Find Full Text PDFThe effect of semiconducting tungsten disulfide (WS) nanoparticles (NPs), functionalized by either methacryloxy, glycidyl, vinyl, or amino silanes, has been studied in photocuring of acrylate and epoxy resins (the latter photocured according to a cationic mechanism). The curing time, degree of curing (DC), thermal effects, and mechanical properties of the radiation-cured resins were investigated. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses confirmed that a silane coating was formed (1-4 nm) on the NPs' surface having a thickness of 1-4 nm.
View Article and Find Full Text PDF[4 + 4] and [2 + 2] cycloadditions are unique reactions since they form and deform cycloadducts under irradiation due to their inherent reversible nature. Whereas promising for the field of recycling, these reactions usually suffer from two major shortcomings: long reaction durations (hours) and the requirement of high-intensity light (∼100 W/cm), typically at a short wavelength (<330 nm). We demonstrate several tetra-dentate catalysts that can overcome these fundamental limitations.
View Article and Find Full Text PDFSuperhydrophilic coatings based on a hydrophilic silica nanoparticle suspension and Poly (acrylic acid) (PAA) were prepared by dip coating. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to examine the morphology of the coating. The effect of surface morphology on the dynamic wetting behavior of the superhydrophilic coatings was studied by changing the silica suspension concentration from 0.
View Article and Find Full Text PDFWe report an innovative approach to creating stretchable conductive materials composed of a tubular shell made from braided carbon nanotube yarns (CNTYs) embedded in an elastomeric matrix. For stretchable electronics, both mechanical properties and electrical conductivities are of interest. Consequently, both the mechanical behavior and electrical conductivities under large deformations were investigated.
View Article and Find Full Text PDFThe effect of particle loading on the wetting properties of coatings was investigated by modifying a coating formulation based on hydrophilic silica nanoparticles and poly (acrylic acid) (PAA). Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Wettability was improved with an increase in particle loading.
View Article and Find Full Text PDFHybrid sol-gel superhydrophobic coatings based on alkyl silane-modified nanosilica were synthesized and studied. The hybrid coatings were synthesized using the classic Stöber process for producing hydrophilic silica nanoparticles (NPs) modified by the in-situ addition of long-chain alkyl silanes co-precursors in addition to the common tetraethyl orthosilicate (TEOS). It was demonstrated that the long-chain alkyl substituent silane induced a steric hindrance effect, slowing the alkylsilane self-condensation and allowing for the condensation of the TEOS to produce the silica NPs.
View Article and Find Full Text PDFPolymers (Basel)
October 2020
The wettability of poly (dimethylsiloxane) (PDMS) coating on plasma-treated glass was studied at room temperature using polar and non-polar liquids. The wettability was investigated regarding the liquids' surface tensions (STs), dielectric constants (DCs) and solubility parameters (SPs). For polar liquids, the contact angle (CA) and contact angle hysteresis (CAH) are controlled by the DCs and non-polar liquids by the liquids' STs.
View Article and Find Full Text PDFCarbon nanotube yarns (CNTYs) possess low density, high conductivity, high strength, and moderate flexibility. These intrinsic properties allow them to be a preferred choice for use as conductive elements in high-performance composites. To fully exploit their potential as conductive reinforcing elements, further improvement in their electrical conductivity is needed.
View Article and Find Full Text PDFAntiviral polymers are part of a major campaign led by the scientific community in recent years. Facing this most demanding of campaigns, two main approaches have been undertaken by scientists. First, the classic approach involves the development of relatively small molecules having antiviral properties to serve as drugs.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2017
Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called "stacked" graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles.
View Article and Find Full Text PDFDurable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings.
View Article and Find Full Text PDFThis study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant.
View Article and Find Full Text PDF