Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana.
View Article and Find Full Text PDFUnderstanding the immunogenetic basis of coronavirus (CoV) susceptibility in major pathogen reservoirs, such as bats, is central to inferring their zoonotic potential. Members of the cryptic Hipposideros bat species complex differ in CoV susceptibility, but the underlying mechanisms remain unclear. The genes of the major histocompatibility complex (MHC) are the best understood genetic basis of pathogen resistance, and differences in MHC diversity are one possible reason for asymmetrical infection patterns among closely related species.
View Article and Find Full Text PDFBackground: Hepatitis E virus (HEV) is among the leading causes of viral hepatitis in most developing countries. Zoonotic acquisition of HEV genotype 3 from swine has come into focus more recently. Available studies on HEV in Ghana and other countries in the region do not provide enough information towards understanding the epidemiology of HEV in human and animal populations.
View Article and Find Full Text PDFAquatic macro-invertebrates play a vital role in the food chain of river ecosystem at several trophic guilds and consumer levels, and are used as biomonitoring tools for aquatic ecosystem health. However, hydrologic conditions of these ecosystems have been severely altered because of the increase in urban development and agricultural expansion. This study examined benthic invertebrate response to processes that structure their community in the Wewe River, segmented into intact, medium, and severe condition zones.
View Article and Find Full Text PDFThis study assessed invertebrate response to disturbances in the riparian zone of the Wewe river, using geometric series, rarefaction, Renyi diversity, and CCA models. We sampled 2,077 individuals (dry season) and 2,282 (wet season) belonging to 16 invertebrate orders. The severely disturbed habitat registered the highest individuals ( = 1,999), while the least was the moderately disturbed habitat ( = 740).
View Article and Find Full Text PDFThe unified neutral theory of biodiversity and biogeography has gained the status of a quantitative null model for explaining patterns in ecological (meta)communities. The theory assumes that individuals of trophically similar species are functionally equivalent. We empirically evaluate the relative contribution of neutral and deterministic processes in shaping fruit-feeding butterfly assemblages in three tropical forests in Africa, using both direct (confronting the neutral model with species abundance data) and indirect approaches (testing the predictions of neutral theory using data other than species abundance distributions).
View Article and Find Full Text PDFBats are likely natural hosts for a range of zoonotic viruses such as Marburg, Ebola, Rabies, as well as for various Corona- and Paramyxoviruses. In 2009/10, researchers discovered RNA of two novel influenza virus subtypes--H17N10 and H18N11--in Central and South American fruit bats. The identification of bats as possible additional reservoir for influenza A viruses raises questions about the role of this mammalian taxon in influenza A virus ecology and possible public health relevance.
View Article and Find Full Text PDFHepatitis E virus (HEV) is one of the most common causes of acute hepatitis in tropical and temperate climates. Tropical genotypes 1 and 2 are associated with food-borne and waterborne transmission. Zoonotic reservoirs (mainly pigs, wild boar, and deer) are considered for genotypes 3 and 4, which exist in temperate climates.
View Article and Find Full Text PDFBats, a globally distributed group of mammals with high ecological importance, are increasingly recognized as natural reservoir hosts for viral agents of significance to human and animal health. In the present study, we evaluated pools of blood samples obtained from two phylogenetically distant bat families, in particular from flying foxes (Pteropodidae), Eidolon helvum in West Africa, and from two species of New World leaf-nosed fruit bats (Phyllostomidae), Artibeus jamaicensis and Artibeus lituratus in Central America. A sequence-independent virus discovery technique (VIDISCA) was used in combination with high throughput sequencing to detect two novel parvoviruses: a PARV4-like virus named Eh-BtPV-1 in Eidolon helvum from Ghana and the first member of a putative new genus in Artibeus jamaicensis from Panama (Aj-BtPV-1).
View Article and Find Full Text PDF