Adding hydrogen atoms and protonation states to structures of membrane proteins requires successful implementation of neutron macromolecular crystallography (NMX). This information would significantly increase our fundamental understanding of the transport processes membrane proteins undertake. To grow the large crystals needed for NMX studies requires significant amounts of stable protein, but once that challenge is overcome there is no intrinsic property of membrane proteins preventing the growth of large crystals per se.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
December 2018
Neutron macromolecular crystallography (NMX) has the potential to provide the experimental input to address unresolved aspects of transport mechanisms and protonation in membrane proteins. However, despite this clear scientific motivation, the practical challenges of obtaining crystals that are large enough to make NMX feasible have so far been prohibitive. Here, the potential impact on feasibility of a more powerful neutron source is reviewed and a strategy for obtaining larger crystals is formulated, exemplified by the calcium-transporting ATPase SERCA1.
View Article and Find Full Text PDF