Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS) of the median nerve has been shown to change spinal motoneuron excitability in the cervical spinal cord as indexed by a change in mean H-reflex amplitude in the flexor carpi radialis muscle. It is unknown whether continuous TBS of a peripheral nerve can also shift motoneuron excitability in the lower limb.
View Article and Find Full Text PDFUpper extremity function has a strong impact on the quality of life in cervical spinal cord-injured patients. Upper extremity function depends on many factors, such as muscle strength, level of lesion, and extension of the cord damage in its axial axis produced by the injury. These variables can be obtained by the International Standards for Neurological Classification of Spinal Cord Injury, which is the standard for the functional evaluation of traumatic spinal cord injury (SCI) patients.
View Article and Find Full Text PDF