This study delves into the transformative effects of atmospheric cold plasma (CP) treatment on little millet flour (LMF), specifically exploring alterations in bioactive compounds, antinutritional factors, and functional properties. Foaming and emulsification properties experienced noteworthy enhancements with plasma treatment, manifesting in significant increases in foaming capacity (up to 51.47 ± 0.
View Article and Find Full Text PDFNon-thermal technologies, primarily employed for microbial inactivation and quality preservation in foods, have seen a surge in interest, with non-thermal plasma garnering particular attention. Cold plasma exhibits promising outcomes, including enhanced germination, improved functional and rheological properties, and microorganism destruction. This has sparked increased exploration across various domains, notably in hydration and rheological properties for creating new products.
View Article and Find Full Text PDFKadamb is a unique and underutilized fruit having rich nutritional profile. The utilization of kadamb fruit in value addition is very limited. In this study, pasta was made using kadamb fruit powder (KFP).
View Article and Find Full Text PDFThe effect on functional properties of kodo millet flour was studied using multipin cold plasma electric reactor. The analysis was carried out at various levels of voltage (10-20 kV) and treatment time (10-30 min) for four different parameters such as water absorption capacity (WAC), oil absorption capacity (OAC), solubility index (SI) and swelling capacity (SC). Response surface methodology (RSM) and artificial neural network - genetic algorithm (ANN - GA) were adopted for modelling and optimization of process variables.
View Article and Find Full Text PDF