Publications by authors named "Samuel J Fountain"

There is growing interest in the P2X4 receptor as a therapeutic target for several cardiovascular, inflammatory and neurological conditions. Key to exploring the physiological and pathophysiological roles of P2X4 is access to selective compounds to probe function in cells, tissues and animal models. There has been a recent growth in selective antagonists for P2X4, though agonist selectivity is less well studied.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) is co-released with norepinephrine and ATP by sympathetic nerves innervating arteries. Circulating NPY is elevated during exercise and cardiovascular disease, though information regarding the vasomotor function of NPY in human blood vessels is limited. Wire myography revealed NPY directly stimulated vasoconstriction (EC 10.

View Article and Find Full Text PDF

Background And Purpose: Senescent preadipocytes promote adipose tissue dysfunction by secreting pro-inflammatory factors, although little is known about the mechanisms regulating their production. We investigated if up-regulated purinoceptor function sensitizes senescent preadipocytes to cognate agonists and how such sensitization regulates inflammation.

Experimental Approach: Etoposide was used to trigger senescence in 3T3-L1 preadipocytes.

View Article and Find Full Text PDF

Junctional adhesion molecules (JAMs; comprising JAM-A, -B and -C) act as receptors for viruses, mediate cell permeability, facilitate leukocyte migration during sterile and non-sterile inflammation and are important for the maintenance of epithelial barrier integrity. As such, they are implicated in the development of both communicable and non-communicable chronic diseases. Here, we investigated the expression and regulation of JAM-B in leukocytes under pathogen- and host-derived inflammatory stimuli using immunoassays, qPCR and pharmacological inhibitors of inflammatory signalling pathways.

View Article and Find Full Text PDF

The P2X4 receptor is a ligand-gated ion channel activated by extracellular ATP. P2X4 activity is associated with neuropathic pain, vasodilation, and pulmonary secretion and is therefore of therapeutic interest. The structure-activity relationship of P2X4 antagonists is poorly understood.

View Article and Find Full Text PDF

Background And Purpose: P2X4 is a ligand-gated cation channel activated by extracellular ATP involved in neuropathic pain, inflammation and arterial tone.

Experimental Approach: Natural products were screened against human or mouse P2X4 activity using fura-2 loaded 1321N1 cells for measurement of intracellular Ca responses. Whole-cell currents were measured by patch clamp.

View Article and Find Full Text PDF

ATP, norepinephrine and NPY are co-released by sympathetic nerves innervating arteries. ATP elicits vasoconstriction via activation of smooth muscle P2X receptors. The functional interaction between neuropeptide Y (NPY) and P2X receptors in arteries is not known.

View Article and Find Full Text PDF

The known seven mammalian receptor subunits (P2X1-7) form cationic channels gated by ATP. Three subunits compose a receptor channel. Each subunit is a polypeptide consisting of two transmembrane regions (TM1 and TM2), intracellular N- and C-termini, and a bulky extracellular loop.

View Article and Find Full Text PDF

Tissues differentially secrete multiple colony stimulating factors under conditions of homeostasis and inflammation, orientating recruited circulating monocytes to differentiate to macrophage with differing functional phenotypes. Here, we investigated ATP-evoked intracellular Ca responses in human macrophage differentiated with macrophage colony-stimulating factor (M-CSF). Extracellular ATP evoked (EC50 13.

View Article and Find Full Text PDF

Background And Purpose: CCL2 is an inflammatory chemokine that stimulates the recruitment of monocytes into tissue via activation of the GPCR CCR2.

Experimental Approach: Freshly isolated human monocytes and THP-1 cells were used. Fura-2 loaded cells were used to measure intracellular Ca responses.

View Article and Find Full Text PDF
Article Synopsis
  • The P2X3 receptor, linked to chronic pain, is targeted by MK-7264 (gefapixant), a selective antagonist currently in Phase III trials for chronic cough.
  • Whole-cell patch clamp studies revealed that MK-7264 acts as a reversible allosteric antagonist, showing different effects based on its application timing.
  • In rat models, MK-7264 increased pain thresholds and reduced discomfort, suggesting its potential for treating conditions related to chronic sensitization.
View Article and Find Full Text PDF

White adipocytes are key regulators of metabolic homeostasis, which release stored energy as free fatty acids via lipolysis. Adipocytes possess both basal and stimulated lipolytic capacity, but limited information exists regarding the molecular mechanisms that regulate basal lipolysis. Here, we describe a mechanism whereby autocrine purinergic signalling and constitutive P2Y receptor activation suppresses basal lipolysis in primary human -differentiated adipocytes.

View Article and Find Full Text PDF

Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs).

View Article and Find Full Text PDF

Leukocytes sense extracellular ATP, a danger-associated molecular pattern, released during cellular stress and death, via activation of cell surface P2X and P2Y receptors. Here, we investigate P2 receptor expression in primary human monocyte-derived macrophages and receptors that mediate ATP-evoked intracellular [Ca] signals and cytokine production in response to ATP concentrations that exclude P2X receptor activation. Expression of P2X, P2X, P2X, P2X, P2Y, P2Y, P2Y, P2Y, P2Y, and P2Y was confirmed by quantitative RT-PCR and immunocytochemistry.

View Article and Find Full Text PDF

Monocytes and macrophages express a repertoire of cell surface P2 receptors for adenosine 5'-triphosphate (ATP) a damage-associated molecular pattern molecule (DAMP), which are capable of raising cytoplasmic calcium when activated. This is achieved either through direct permeation (ionotropic P2X receptors) or by mobilizing intracellular calcium stores (metabotropic P2Y receptors). Here, a side-by-side comparison to investigate the contribution of P2X4 receptor activation in ATP-evoked calcium responses in model human monocytes and macrophages was performed.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate is a well-known extracellular signaling molecule and neurotransmitter known to activate purinergic P2X receptors. Information has been elucidated about the structure and gating of P2X channels following the determination of the crystal structure of P2X4 (zebrafish), however, there is still much to discover regarding the role of this receptor in the central nervous system (CNS). In this review we provide an overview of what is known about P2X4 expression in the CNS and discuss evidence for pathophysiological roles in neuroinflammation and neuropathic pain.

View Article and Find Full Text PDF

Mechanisms controlling endoplasmic reticulum (ER) Ca homeostasis are important regulators of resting cytoplasmic Ca concentration ([Ca]) and receptor-mediated Ca signalling. Here we investigate channels responsible for ER Ca leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca we employ ionomycin action at the plasma membrane to stimulate ER Ca leak.

View Article and Find Full Text PDF

ATP is omnipresent in biology and acts as an extracellular signaling molecule in mammals. Information regarding the signaling function of extracellular ATP in single-celled eukaryotes is lacking. Here, we explore the role of extracellular ATP in cell volume recovery during osmotic swelling in the amoeba Dictyostelium.

View Article and Find Full Text PDF

The chemokine CCL2 serves to target circulating monocytes and other leukocytes to tissue during innate immune responses, and modulates the progression of chronic inflammatory disease through activation of the receptor CCR2. Here, we show that co-activation of the P2Y₆ purinergic receptor (encoded by P2RY₆) occurs when THP-1 cells and human peripheral blood mononuclear cells sense CCL2 through CCR2. Furthermore, P2Y₆ receptor activation accounts for ∼80% of the intracellular Ca²⁺ signal evoked by CCL2.

View Article and Find Full Text PDF

Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction.

View Article and Find Full Text PDF

Release and reception of extracellular ATP by leukocytes plays a critical role in immune responses to infection, injury and cardiovascular disease. Leukocytes of both the innate, adaptive immune and central nervous system express a repertoire of cell surface receptors for ATP (P2X and P2Y receptors) and its metabolites. ATP acts as a damage-associated molecule pattern (DAMP) released by injured or dying cells.

View Article and Find Full Text PDF

P2X receptors are calcium permeable ligand-gated ion channels activated by ATP. Their role as cell surface receptors for extracellular ATP released physiologically by mammalian cells is well established. However, the cellular function of P2X receptor subtypes that populate the membranes of intracellular compartments is not defined.

View Article and Find Full Text PDF

Elucidating mechanisms by which Ca(2+) signals are generated by monocytes is important for understanding monocyte function in health and disease. We have investigated mechanisms underlying Ca(2+) signals generated following disruption of lysosomes by exposure to the cathepsin C substrate glycyl-L-phenylalanine-β-napthylamide (GPN). Exposure to 0.

View Article and Find Full Text PDF

P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling.

View Article and Find Full Text PDF

Statins have both cholesterol lowering and anti-inflammatory activities, whether mechanisms underlying their activities are independent remains unclear. The ATP-gated P2X(4) receptor is a pro-inflammatory mediator. Here, we investigate the action of fluvastatin and other cholesterol depleting agents on native and recombinant human P2X(4) receptor.

View Article and Find Full Text PDF