Durable and conductive interfaces that enable chronic and high-resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long-term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties.
View Article and Find Full Text PDFElectrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves.
View Article and Find Full Text PDFThe purpose of this work is to clarify the mechanism of piezoresistance in a class of ultra-sensitive strain gauges based on metallic films on 2D substrates ("2D/M" films). The metals used are gold or palladium deposited as ultrathin films (≤16 nm). These films transition from a regime of subcontiguous growth to a percolated morphology with increasing nominal thickness.
View Article and Find Full Text PDFDespite the apparent convenience of microfluidic technologies for applications in healthcare, such devices often rely on capital-intensive optics and other peripheral equipment that limit throughput. Here, we monitored the transit of fluids, gases, particles, and cells as they flowed through a microfluidic channel without the use of a camera or laser, i.e.
View Article and Find Full Text PDF