Alveolar epithelial cell (AEC) injury is central to the pathogenesis of pulmonary fibrosis. Epithelial FGF (fibroblast growth factor) signaling is essential for recovery from hyperoxia- and influenza-induced lung injury, and treatment with FGFs is protective in experimental lung injury. The cell types involved in the protective effect of FGFs are not known.
View Article and Find Full Text PDFFibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of pulmonary fibrosis. Mice lacking FGF2 have increased mortality and impaired epithelial recovery after bleomycin exposure, supporting a protective or reparative function following lung injury. To determine whether FGF2 overexpression reduces bleomycin-induced injury, we developed an inducible genetic system to express FGF2 in type II pneumocytes.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is characterized by progressive pulmonary scarring, decline in lung function, and often results in death within 3-5 five years after diagnosis. Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of IPF; however, the mechanism through which FGF signaling contributes to pulmonary fibrosis remains unclear. We hypothesized that FGF receptor (FGFR) signaling in fibroblasts is required for the fibrotic response to bleomycin.
View Article and Find Full Text PDF