Secondary and tertiary RNA structures play key roles in genome replication of single-stranded positive sense RNA viruses. Complex, functional structures are particularly abundant in the untranslated regions of picornaviruses, where they are involved in initiation of translation, priming of new strand synthesis and genome circularization. The 5' UTR of foot-and-mouth disease virus (FMDV) is predicted to include a c.
View Article and Find Full Text PDFFoot-and-mouth-disease virus (FMDV), the aetiological agent responsible for foot-and-mouth disease (FMD), is a member of the genus within the family . In common with all picornaviruses, replication of the single-stranded positive-sense RNA genome involves synthesis of a negative-sense complementary strand that serves as a template for the synthesis of multiple positive-sense progeny strands. We have previously employed FMDV replicons to examine viral RNA and protein elements essential to replication, but the factors affecting differential strand production remain unknown.
View Article and Find Full Text PDFThe Enterovirus (EV) genus includes several important human and animal pathogens. EV-A71, EV-D68, poliovirus (PV), and coxsackievirus (CV) outbreaks have affected millions worldwide, causing a range of upper respiratory, skin, and neuromuscular diseases, including acute flaccid myelitis, and hand-foot-and-mouth disease. There are no FDA-approved antiviral therapeutics for these enteroviruses.
View Article and Find Full Text PDFFoot-and-mouth disease (FMD) is a highly contagious and economically devastating viral disease of livestock and is endemic in much of Asia, including Pakistan. Vaccination is used to control disease outbreaks and sensitive diagnostic methods which can differentiate infected animals from vaccinated animals (DIVA) are essential for monitoring the effectiveness of disease control programmes. Tests based on the detection of the non-structural protein (NSP) 3ABC are reliable indicators of virus replication in infected and vaccinated populations.
View Article and Find Full Text PDFMerkel cell carcinoma (MCC) is an aggressive skin cancer with high rates of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases. MCPyV-induced tumourigenesis is largely dependent on the expression of the small tumour antigen (ST).
View Article and Find Full Text PDFDuring virus entry, members of the Polyomaviridae transit the endolysosomal network en route to the endoplasmic reticulum (ER), from which degraded capsids escape into the cytoplasm and enter the nucleus. Emerging evidence suggests that viruses require both endosomal acidification and the correct ionic balance of K and Ca ions in endosomes for correct virus trafficking and genome release. Here, using two polyomaviruses with different capsid architectures, namely Simian virus 40 (SV40) and Merkel cell polyomavirus (MCPyV), we describe methods to rapidly quantify virus infection using IncuCyte ZOOM imaging analysis, and use this system to investigate the role of both K and Ca channels during the early stages of virus entry.
View Article and Find Full Text PDFMerkel cell carcinoma (MCC) is an aggressive skin cancer with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is recognised as the causative factor in the majority of MCC cases. The MCPyV small tumour antigen (ST) is considered to be the main viral transforming factor, however potential mechanisms linking ST expression to the highly metastatic nature of MCC are yet to be fully elucidated.
View Article and Find Full Text PDFCell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood of recurrence and metastasis.
View Article and Find Full Text PDFStudies have highlighted the essential nature of a group of small, highly hydrophobic, membrane embedded, channel-forming proteins in the life cycles of a growing number of RNA viruses. These viroporins mediate the flow of ions and a range of solutes across cellular membranes and are necessary for manipulating a myriad of host processes. As such they contribute to all stages of the virus life cycle.
View Article and Find Full Text PDF