Point of care (PoC) nucleic acid amplification tests (NAATs) are a cornerstone of public health, providing the earliest and most accurate diagnostic method for many communicable diseases in the same location where the patient receives treatment. Communicable diseases, such as human immunodeficiency virus (HIV), disproportionately impact low-resource communities where NAATs are often unobtainable due to the resource-intensive enzymes that drive the tests. Enzyme-free nucleic acid detection methods, such as hybridization chain reaction (HCR), use DNA secondary structures for self-driven amplification schemes, producing large DNA nanostructures, capable of single-molecule detection .
View Article and Find Full Text PDFPoint of care (PoC) nucleic acid amplification tests (NAATs) are a cornerstone of public health, providing the earliest and most accurate diagnostic method for many communicable diseases, such as HIV, in the same location the patient receives treatment. Communicable diseases disproportionately impact low-resource communities where NAATs are often unobtainable due to the resource intensive enzymes that drive the tests. Enzyme-free nucleic acid detection methods, such as hybridization chain reaction (HCR), use DNA secondary structures for self-driven amplification schemes producing large DNA nanostructures and capable of single molecule detection .
View Article and Find Full Text PDFPaper-based analytical devices, or μPADs, have proven to be valuable bioanalytical tools for a broad range of applications. New methods for μPAD fabrication are needed, however, to facilitate their mass production at a competitive cost. To address this need, we report the use of a boronic acid-containing siloxane polymer (BorSilOx) for patterning hydrophobic barriers for μPADs.
View Article and Find Full Text PDFIncorporating dynamic covalent bonds into block copolymers provides useful molecular level information during mechanical testing, but it is currently unknown how the incorporation of these units affects the resultant polymer morphology. High-molecular-weight polyisobutylene-b-polystyrene block copolymers containing an anthracene/maleimide dynamic covalent bond are synthesized through a combination of postpolymerization modification, reversible addition-fragmentation chain-transfer polymerization, and Diels-Alder coupling. The bulk morphologies with and without dynamic covalent bond are characterized by atomic force microscopy and small-angle X-ray scattering, which reveal a strong dependence on annealing time and casting solvent.
View Article and Find Full Text PDFSynthetic aromatic polymers are ubiquitous and indispensable to modern life, industry, and the global economy. The direct functionalization of these materials remains a considerable challenge on account of their unreactive aromatic C-H bonds and robust physical properties. Here, we demonstrate that homogeneous gold catalysis offers a mild, chemoselective, and practical approach to functionalize high-volume commodity aromatic polymers.
View Article and Find Full Text PDFThe binaural interaction component (BIC) of the auditory brainstem response is a noninvasive electroencephalographic signature of neural processing of binaural sounds. Despite its potential as a clinical biomarker, the neural structures and mechanism that generate the BIC are not known. We explore here the hypothesis that the BIC emerges from excitatory-inhibitory interactions in auditory brainstem neurons.
View Article and Find Full Text PDFVolumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle.
View Article and Find Full Text PDFRecently, a new type of limb-girdle muscular dystrophy (LGMD type 2Z) has been identified due to a missense mutation in POGLUT1 (protein O-glucosyltransferase-Rumi), an enzyme capable of adding glucose to a distinct serine residue of epidermal growth factor-like repeats containing a C-X-S-X-(P/A)-C consensus sequence such as Notch receptors. Affected patients demonstrate reduced Notch signaling, decreased muscle stem cell pool and hypoglycosylation of α-dystroglycan, leading to LGMD phenotype. Here we report the generation and characterization of an iPSC line (CSCRMi001-A) from a LGMD-2Z patient with missense mutation in POGLUT1 which can be used for in vitro disease modeling.
View Article and Find Full Text PDFDirected differentiation of iPS cells toward various tissue progenitors has been the focus of recent research. Therefore, generation of tissue-specific reporter iPS cell lines provides better understanding of developmental stages in iPS cells. This technical report describes an efficient strategy for generation and validation of knock-in reporter lines in human iPS cells using the Cas9-nickase system.
View Article and Find Full Text PDFHuman iPS cells hold great promise for disease modeling and treatment of degenerative disorders including muscular dystrophies. Although a few research groups have used them for skeletal muscle differentiation, most were based on gene over-expression or long-term mesenchymal differentiation and retrospective identification of myogenic cells. Therefore, this study was aimed to generate a knock-in reporter human iPS cell line for MYF5, as an early myogenic specification gene, to allow prospective identification and purification of myogenic progenitors from human iPS cells.
View Article and Find Full Text PDFMuscular dystrophies are among major inherited muscle disorders characterized by progressive muscle damage and fibrosis with no definitive cure. Recently, gene or cell based therapies have been developed to restore the missing gene expression or replace the damaged tissues. In order to test the efficiency of these therapies in mice models of muscular dystrophies, the arterial route of delivery is very advantageous as it provides uniform muscle exposure to the therapeutic agents or cells.
View Article and Find Full Text PDFWe present a fortuitous discovery of enhanced shape-selective recognition of anion guests that stems from a complexation-induced conformational change in porphyrin hosts upon anion binding. Porphyrin hosts reported here exist in a conformation that is not favorable to guest binding. Anions that bind strongly are those that can induce a conformational change in the host to allow guest binding.
View Article and Find Full Text PDFThe consummate principle underlying all physiological research is corporeal adaptation at every level of the organism observed. With respect to humans, the body learns to function based on the external stimuli from the environment, beginning in the womb, throughout the developmental stages of life. Nitric Oxide (NO) appears to be the governor of the plasticity of several systems in mammals implicit in their proper development.
View Article and Find Full Text PDF