Publications by authors named "Samuel Henson"

The application of spectroscopic process analytical technology (PAT) for in-line data collection offers advantages to modern pharmaceutical manufacturing. Partial least squares (PLS) models are the preferred approach for predicting API potency from PAT data, particularly near-infrared (NIR) spectra. However, the calibration burden of PLS models is sometimes considered prohibitive.

View Article and Find Full Text PDF

Process analytical technology (PAT) is an essential tool within pharmaceutical manufacturing to ensure consistent quality and maintain process control. Near-infrared (NIR) spectroscopy is one of the most popular PAT techniques, particularly for monitoring active pharmaceutical ingredient (API) concentrations. To interpret the spectral outputs of NIR spectroscopy, advanced multivariate models are required.

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy has become an important process analytical technology (PAT) for monitoring and implementing control in continuous manufacturing (CM) schemes. However, NIR requires complex multivariate models to properly extract the relevant information and the traditional model of choice, partial least squares, can be unfavorable on account of its high material and time investments for generating calibrations. To account for this, pure component-based approaches have been gaining attention due to their higher flexibility and ease of development.

View Article and Find Full Text PDF

As continuous manufacturing (CM) processes are developed, process analytical technology (PAT) via NIR spectroscopy has become an integral tool in process monitoring. NIR spectroscopy requires the deployment of complex multivariate models to extract the relevant information. The model of choice for the pharmaceutical industry is Partial Least Squares (PLS).

View Article and Find Full Text PDF

Background: Interest into the health, disease, and performance impact of exogenous ketone bodies has rapidly expanded due to their multifaceted physiological and signaling properties but limiting our understanding is the isolated analyses of individual types and dose/dosing protocols.

Methods: Thirteen recreational male distance runners (24.8 ± 9.

View Article and Find Full Text PDF