Publications by authors named "Samuel Gyger"

We demonstrate a thin film lithium niobate electro-optic modulator operating at 456 nm with an RF voltage-length product of 0.38 V-cm and a bandwidth of 6.9 GHz.

View Article and Find Full Text PDF

Artificial atoms in solids are leading candidates for quantum networks, scalable quantum computing, and sensing, as they combine long-lived spins with mobile photonic qubits. Recently, silicon has emerged as a promising host material where artificial atoms with long spin coherence times and emission into the telecommunications band can be controllably fabricated. This field leverages the maturity of silicon photonics to embed artificial atoms into the world's most advanced microelectronics and photonics platform.

View Article and Find Full Text PDF

Quantum optical technologies promise advances in sensing, computing, and communication. A key resource is squeezed light, where quantum noise is redistributed between optical quadratures. We introduce a monolithic, chip-scale platform that exploits the χ nonlinearity of a thin-film lithium niobate (TFLN) resonator device to efficiently generate squeezed states of light.

View Article and Find Full Text PDF

Lithium niobate, because of its nonlinear and electro-optical properties, is one of the materials of choice for photonic applications. The development of nanostructuring capabilities of thin film lithium niobate (TFLN) permits fabrication of small footprint, low-loss optical circuits. With the recent implementation of on-chip single-photon detectors, this architecture is among the most promising for realizing on-chip quantum optics experiments.

View Article and Find Full Text PDF

We demonstrate a fiber-coupled fractal superconducting nanowire single-photon detector (SNSPD) system with minimum polarization dependence of detection efficiency. Its system detection efficiency (SDE) was maximized at the wavelength of 1540 nm, which was measured to be 91 ± 4%; furthermore, we observed the second local maximum of SDE at the wavelength of 520 nm, which was measured to be 61 ± 2%. This dual-band feature of SDE was due to the enhancement of the optical absorptance by two longitudinal resonance modes of the micro-cavity.

View Article and Find Full Text PDF

Entangled photon generation at 1550 nm in the telecom C-band is of critical importance as it enables the realization of quantum communication protocols over long distance using deployed telecommunication infrastructure. InAs epitaxial quantum dots have recently enabled on-demand generation of entangled photons in this wavelength range. However, time-dependent state evolution, caused by the fine-structure splitting, currently limits the fidelity to a specific entangled state.

View Article and Find Full Text PDF

The heterogeneous integration of low-dimensional materials with photonic waveguides has spurred wide research interest. Here, we report on the experimental investigation and the numerical modeling of enhanced nonlinear pulse broadening in silicon nitride waveguides with the heterogeneous integration of few-layer WS. After transferring a few-layer WS flake of ∼14.

View Article and Find Full Text PDF

Entangled photons are an integral part in quantum optics experiments and a key resource in quantum imaging, quantum communication, and photonic quantum information processing. Making this resource available on-demand has been an ongoing scientific challenge with enormous progress in recent years. Of particular interest is the potential to transmit quantum information over long distances, making photons the only reliable flying qubit.

View Article and Find Full Text PDF

Efficient on-chip integration of single-photon emitters imposes a major bottleneck for applications of photonic integrated circuits in quantum technologies. Resonantly excited solid-state emitters are emerging as near-optimal quantum light sources, if not for the lack of scalability of current devices. Current integration approaches rely on cost-inefficient individual emitter placement in photonic integrated circuits, rendering applications impossible.

View Article and Find Full Text PDF

Integrated quantum photonics offers a promising path to scale up quantum optics experiments by miniaturizing and stabilizing complex laboratory setups. Central elements of quantum integrated photonics are quantum emitters, memories, detectors, and reconfigurable photonic circuits. In particular, integrated detectors not only offer optical readout but, when interfaced with reconfigurable circuits, allow feedback and adaptive control, crucial for deterministic quantum teleportation, training of neural networks, and stabilization of complex circuits.

View Article and Find Full Text PDF

We demonstrate electrostatic switching of individual, site-selectively generated matrices of single photon emitters (SPEs) in MoS van der Waals heterodevices. We contact monolayers of MoS in field-effect devices with graphene gates and hexagonal boron nitride as the dielectric and graphite as bottom gates. After the assembly of such gate-tunable heterodevices, we demonstrate how arrays of defects, that serve as quantum emitters, can be site-selectively generated in the monolayer MoS by focused helium ion irradiation.

View Article and Find Full Text PDF

We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively coupled plasma, and selective wet chemical etching. Precise reflow and etching control allows us to achieve a parabolic backside mirror with a short focal distance of 265 nm.

View Article and Find Full Text PDF

In this work, we demonstrate reconfigurable frequency manipulation of quantum states of light in the telecom C-band. Triggered single photons are encoded in a superposition state of three channels using sidebands up to 53 GHz created by an off-the-shelf phase modulator. The single photons are emitted by an InAs/GaAs quantum dot grown by metal-organic vapor-phase epitaxy within the transparency window of the backbone fiber optical network.

View Article and Find Full Text PDF

Semiconductor quantum dots are crucial parts of the photonic quantum technology toolbox because they show excellent single-photon emission properties in addition to their potential as solid-state qubits. Recently, there has been an increasing effort to deterministically integrate single semiconductor quantum dots into complex photonic circuits. Despite rapid progress in the field, it remains challenging to manipulate the optical properties of waveguide-integrated quantum emitters in a deterministic, reversible, and nonintrusive manner.

View Article and Find Full Text PDF