A novel series of 3-amino-piperidin-2-one-based calcitonin gene-related peptide (CGRP) receptor antagonists was invented based upon the discovery of unexpected structure-activity observations. Initial exploration of the structure-activity relationships enabled the generation of a moderately potent lead structure (4). A series of modifications, including ring contraction and inversion of stereocenters, led to surprising improvements in CGRP receptor affinity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
Heat dissipation plays a crucial role in the performance and reliability of high-power GaN-based electronics. While AlN transition layers are commonly employed in the heteroepitaxial growth of GaN-on-SiC substrates, concerns have been raised about their impact on thermal transport across GaN/SiC interfaces. In this study, we present experimental measurements of the thermal boundary conductance (TBC) across GaN/SiC interfaces with varying thicknesses of the AlN transition layer (ranging from 0 to 73 nm) at different temperatures.
View Article and Find Full Text PDFHfO-based synapses are widely accepted as a viable candidate for both in-memory and neuromorphic computing. Resistance change in oxide-based synapses is caused by the motion of oxygen vacancies. HfO-based synapses typically demonstrate an abrupt nonlinear resistance change under positive bias application (set), limiting their viability as analog memory.
View Article and Find Full Text PDFHigh thermal conductivity electronic materials are critical components for high-performance electronic and photonic devices as both active functional materials and thermal management materials. We report an isotropic high thermal conductivity exceeding 500 W mK at room temperature in high-quality wafer-scale cubic silicon carbide (3C-SiC) crystals, which is the second highest among large crystals (only surpassed by diamond). Furthermore, the corresponding 3C-SiC thin films are found to have record-high in-plane and cross-plane thermal conductivity, even higher than diamond thin films with equivalent thicknesses.
View Article and Find Full Text PDFStretchable optoelectronics made of elastomeric semiconductors could enable the integration of intelligent systems with soft materials, such as those of the biological world. Organic semiconductors and photodiodes have been engineered to be elastomeric; however, for photodetector applications, it remains a challenge to identify an elastomeric bulk heterojunction (e-BHJ) photoactive layer that combines a low Young’s modulus and a high strain at break that yields organic photodiodes with low electronic noise values and high photodetector performance. Here, a blend of an elastomer, a donor-like polymer, and an acceptor-like molecule yields a skin-like e-BHJ with a Young’s modulus of a few megapascals, comparable to values of human tissues, and a high strain at break of 189%.
View Article and Find Full Text PDFThe implementation of 5G-and-beyond networks requires faster, high-performance, and power-efficient semiconductor devices, which are only possible with materials that can support higher frequencies. Gallium nitride (GaN) power amplifiers are essential for 5G-and-beyond technologies since they provide the desired combination of high frequency and high power. These applications along with terrestrial hub and backhaul communications at high power output can present severe heat removal challenges.
View Article and Find Full Text PDFInterfaces impede heat flow in micro/nanostructured systems. Conventional theories for interfacial thermal transport were derived based on bulk phonon properties of the materials making up the interface without explicitly considering the atomistic interfacial details, which are found critical to correctly describing thermal boundary conductance. Recent theoretical studies predicted the existence of localized phonon modes at the interface which can play an important role in understanding interfacial thermal transport.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
Measuring the maximum operating temperature within the channel of ultrawide band-gap transistors is critically important since the temperature dependence of the device reliability sets operational limits such as maximum operational power. Thermoreflectance imaging (TTI) is an optimal choice to measure the junction temperature due to its submicrometer spatial resolution and submicrosecond temporal resolution. Since TTI is an imaging technique, data acquisition is orders of magnitude faster than point measurement techniques such as Raman thermometry.
View Article and Find Full Text PDFThe development of high thermal conductivity thin film materials for the thermal management of electronics requires accurate and precise methods for characterizing heat spreading capability, namely, in-plane thermal conductivity. However, due to the complex nature of thin film thermal property measurements, resolving the in-plane thermal conductivity of high thermal conductivity anisotropic thin films with high accuracy is particularly challenging. Capable transient techniques exist; however, they usually measure thermal diffusivity and require heat capacity and density to deduce thermal conductivity.
View Article and Find Full Text PDFThermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal-nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.
View Article and Find Full Text PDFIn this work, we study the thermal transport at β-GaO/metal interfaces, which play important roles in heat dissipation and as electrical contacts in β-GaO devices. A theoretical Landauer approach was used to model and elucidate the factors that impact the thermal transport at these interfaces. Experimental measurements using time-domain thermoreflectance (TDTR) provided data for the thermal boundary conductance (TBC) between β-GaO and a range of metals used to create both Schottky and ohmic electrical contacts.
View Article and Find Full Text PDFHigh thermal conductivity materials show promise for thermal mitigation and heat removal in devices. However, shrinking the length scales of these materials often leads to significant reductions in thermal conductivities, thus invalidating their applicability to functional devices. In this work, we report on high in-plane thermal conductivities of 3.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2020
The ultrawide band gap, high breakdown electric field, and large-area affordable substrates make β-GaO promising for applications of next-generation power electronics, while its thermal conductivity is at least 1 order of magnitude lower than other wide/ultrawide band gap semiconductors. To avoid the degradation of device performance and reliability induced by the localized Joule-heating, proper thermal management strategies are essential, especially for high-power high-frequency applications. This work reports a scalable thermal management strategy to heterogeneously integrate wafer-scale monocrystalline β-GaO thin films on high thermal conductivity SiC substrates by the ion-cutting technique and room-temperature surface-activated bonding technique.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2020
Aluminum nitride (AlN) has garnered much attention due to its intrinsically high thermal conductivity. However, engineering thin films of AlN with these high thermal conductivities can be challenging due to vacancies and defects that can form during the synthesis. In this work, we report on the cross-plane thermal conductivity of ultra-high-purity single-crystal AlN films with different thicknesses (∼3-22 μm) via time-domain thermoreflectance (TDTR) and steady-state thermoreflectance (SSTR) from 80 to 500 K.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
The wide bandgap, high-breakdown electric field, and high carrier mobility makes GaN an ideal material for high-power and high-frequency electronics applications, such as wireless communication and radar systems. However, the performance and reliability of GaN-based high-electron-mobility transistors (HEMTs) are limited by the high channel temperature induced by Joule heating in the device channel. Integration of GaN with high thermal conductivity substrates can improve the heat extraction from GaN-based HEMTs and lower the operating temperature of the device.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
High-power GaN-based electronics are limited by high channel temperatures induced by self-heating, which degrades device performance and reliability. Increasing the thermal boundary conductance (TBC) between GaN and SiC will aid in the heat dissipation of GaN-on-SiC devices by taking advantage of the high thermal conductivity of SiC substrates. For the typical growth method, there are issues concerning the transition layer at the interface and low-quality GaN adjacent to the interface, which impedes heat flow.
View Article and Find Full Text PDFThe development of electronic devices, especially those that involve heterogeneous integration of materials, has led to increased challenges in addressing their thermal operational temperature demands. The heat flow in these systems is significantly influenced or even dominated by thermal boundary resistance at the interface between dissimilar materials. However, controlling and tuning heat transport across an interface and in the adjacent materials has so far drawn limited attention.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Atomic layer deposition (ALD) is a well-known technique for the fabrication of ultrathin and highly conformal barrier coatings which have extensively been used for the protection of electronic devices in open atmospheric conditions. Here, we extend the scope for the application of low-temperature-deposited plasma-enhanced ALD barrier coatings for the protection of devices in a variety of chemical environments. The chemical stability tests were conducted in 3.
View Article and Find Full Text PDFWe present experimental measurements of the thermal boundary conductance (TBC) from 78-500 K across isolated heteroepitaxially grown ZnO films on GaN substrates. This data provides an assessment of the underlying assumptions driving phonon gas-based models, such as the diffuse mismatch model (DMM), and atomistic Green's function (AGF) formalisms used to predict TBC. Our measurements, when compared to previous experimental data, suggest that TBC can be influenced by long wavelength, zone center modes in a material on one side of the interface as opposed to the '"vibrational mismatch"' concept assumed in the DMM; this disagreement is pronounced at high temperatures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2018
The development of GaN-on-diamond devices holds much promise for the creation of high-power density electronics. Inherent to the growth of these devices, a dielectric layer is placed between the GaN and diamond, which can contribute significantly to the overall thermal resistance of the structure. In this work, we explore the role of different interfaces in contributing to the thermal resistance of the interface of GaN/diamond layers, specifically using 5 nm layers of AlN, SiN, or no interlayer at all.
View Article and Find Full Text PDFA second-generation small molecule P2X3 receptor antagonist has been developed. The lead optimization strategy to address shortcomings of the first-generation preclinical lead compound is described herein. These studies were directed towards the identification and amelioration of preclinical hepatobiliary findings, reducing potential for drug-drug interactions, and decreasing the projected human dose of the first-generation lead.
View Article and Find Full Text PDFThis work is concerned with the long-term behavior of environmentally-assisted subcritical cracking of PECVD SiN barrier films on polyethylene terephthalate (PET) and polyimide (PI) substrates. While environmentally-assisted channel cracking in SiN has been previously demonstrated, with constant crack growth rates over short periods of time (<1 hour) during which no substrate damage was observed, the present experiments over longer periods reveal a regime where cracking also develops in the polymer substrate. This time-dependent local cracking of the polymer underneath the channel crack is expected based on creep rupture or static fatigue.
View Article and Find Full Text PDF