Biphasic interfaces are complex but fascinating regimes that display a number of properties distinct from those of the bulk. The CO2-H2O interface, in particular, has been the subject of a number of studies on account of its importance for the carbon life cycle as well as carbon capture and sequestration schemes. Despite this attention, there remain a number of open questions on the nature of the CO2-H2O interface, particularly concerning the interfacial tension and phase behavior of CO2 at the interface.
View Article and Find Full Text PDFWe obtain the interaction potential for NaCs by fitting to experiments on ultracold scattering and spectroscopy in optical tweezers. The central region of the potential has been accurately determined from Fourier transform spectroscopy at higher temperatures, so we focus on adjusting the long-range and short-range parts. We use coupled-channel calculations of binding energies and wave functions to understand the nature of the molecular states observed in ultracold spectroscopy and of the state that causes the Feshbach resonance used to create ultracold NaCs molecules.
View Article and Find Full Text PDF