Publications by authors named "Samuel Failor"

Background: Activity in neurons drives afferent competition that is critical for the refinement of nascent neural circuits. In ferrets, when an eye is lost in early development, surviving retinogeniculate afferents from the spared eye spread across the thalamus in a manner that is dependent on spontaneous retinal activity. However, how this spontaneous activity, also known as retinal waves, might dynamically regulate afferent terminal targeting remains unknown.

View Article and Find Full Text PDF

Current models of retinogeniculate development have proposed that connectivity between the retina and the dorsal lateral geniculate nucleus (dLGN) is established by gradients of axon guidance molecules, to allow initial coarse connections, and by competitive Hebbian-like processes, to drive eye-specific segregation and refine retinotopy. Here we show that when intereye competition is eliminated by monocular enucleation, blocking cholinergic stage II retinal waves disrupts the intraeye competition-mediated expansion of the retinogeniculate projection and results in the permanent disorganization of its laminae. This disruption of stage II retinal waves also causes long-term impacts on receptive field size and fine-scale retinotopy in the dLGN.

View Article and Find Full Text PDF

Ocular dominance plasticity (ODP) following monocular deprivation (MD) is a model of activity-dependent neural plasticity that is restricted to an early critical period regulated by maturation of inhibition. Unique developmental plasticity mechanisms may improve outcomes following early brain injury. Our objective was to determine the effects of neonatal cerebral hypoxia-ischemia (HI) on ODP.

View Article and Find Full Text PDF