Publications by authors named "Samuel F Reid"

How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn.

View Article and Find Full Text PDF

Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions.

View Article and Find Full Text PDF

Animals avoid temperatures that constrain foraging by restricting activity to specific times of the day or year. However, because temperature alters the availability of food resources, it is difficult to separate temperature-dependent effects on foraging and the occupation of temporal niches. By studying two congeneric, sympatric Myrmecia ants we isolated the effect of temperature and investigated whether temperature affects foraging schedules and causes the two ants to be active at distinct times of the day or year.

View Article and Find Full Text PDF

Navigating animals are known to use a number of celestial and terrestrial compass cues that allow them to determine and control their direction of travel. Which of the cues dominate appears to depend on their salience. Here we show that night-active bull ants attend to both the pattern of polarised skylight and the landmark panorama in their familiar habitat.

View Article and Find Full Text PDF

Animals are active at different times of the day and their activity schedules are shaped by competition, time-limited food resources and predators. Different temporal niches provide different light conditions, which affect the quality of visual information available to animals, in particular for navigation. We analysed caste-specific differences in compound eyes and ocelli in four congeneric sympatric species of Myrmecia ants, with emphasis on within-species adaptive flexibility and daily activity rhythms.

View Article and Find Full Text PDF

Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables.

View Article and Find Full Text PDF