High-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo-electron volts, allowing, in principle, the generation of pulses as short as 2.
View Article and Find Full Text PDFWe experimentally investigate the phase of an optical field after it has undergone wave collapse. We confirm the theoretical prediction that it acquires a large cumulative nonlinear phase shift that is highly sensitive to small fluctuations of the laser input power. This results in an effective postcollapse "loss of phase," whereby the phase of the transmitted beam shows a significant increase in sensitivity to the input fluctuations of the pulse energy.
View Article and Find Full Text PDFWe investigate experimentally the role that the initial temporal profile of ultrashort laser pulses has on the self-focusing dynamics in the anomalous group-velocity dispersion (GVD) regime. We observe that pulse-splitting occurs for super-Gaussian pulses, but not for Gaussian pulses. The splitting does not occur for either pulse shape when the GVD is near-zero.
View Article and Find Full Text PDFWe investigate 3D spatio-temporal focusing of elliptically-shaped beams in a bulk medium with Kerr nonlinearity and anomalous group-velocity dispersion (GVD). Strong space-time localization of the mode is observed through multi-filamentation with temporal compression by a factor of 3. This behavior is in contrast to the near-zero GVD regime in which minimal pulse temporal compression is observed.
View Article and Find Full Text PDFWe theoretically investigate filamentation of ultrashort laser pulses in air in the mid-infrared regime under conditions in which the group-velocity dispersion (GVD) is anomalous. When a high-power, ultra-short mid-infrared laser beam centered at 3.1-μm forms a filament, a spatial solitary wave is stabilized by the plasma formation and propagates several times its diffraction length.
View Article and Find Full Text PDF