Publications by authors named "Samuel E Munoz"

This study presents a spatio-temporal framework that integrates ecosystem services into ecological risk assessment to evaluate the ecosystem service vulnerability of urban salt marshes to sea-level rise. The model was tested at Belle Isle Marsh to quantify and qualify the evolving capacity of urban marshes to continue supplying ecosystem services to an increasing urban populace to the end of the century with focus on carbon storage, nitrogen storage, fish nursery, and Saltmarsh Sparrow viewing. We project that sea-level rise will drive dynamic trade-offs between habitats and ecosystem services over space and time.

View Article and Find Full Text PDF

Plastic contamination of the environment is a global problem whose magnitude justifies the consideration of plastics as emergent geomaterials with chemistries not previously seen in Earth's history. At the elemental level, plastics are predominantly carbon. The comparison of plastic stocks and fluxes to those of carbon reveals that the quantities of plastics present in some ecosystems rival the quantity of natural organic carbon and suggests that geochemists should now consider plastics in their analyses.

View Article and Find Full Text PDF

A number of competing hypotheses, including hydroclimatic variations, environmental degradation and disturbance, and sociopolitical disintegration, have emerged to explain the dissolution of Cahokia, the largest prehistoric population center in the United States. Because it is likely that Cahokia's decline was precipitated by multiple factors, some environmental and some societal, a robust understanding of this phenomenon will require multiple lines of evidence along with a refined chronology. Here, we use fecal stanol data from Horseshoe Lake, Illinois, as a population proxy for Cahokia and the broader Horseshoe Lake watershed.

View Article and Find Full Text PDF

Over the past century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure.

View Article and Find Full Text PDF

Mississippi River floods rank among the costliest climate-related disasters in the world. Improving flood predictability, preparedness, and response at seasonal to decadal time-scales requires an understanding of the climatic controls that govern flood occurrence. Linking flood occurrence to persistent modes of climate variability like the El Niño-Southern Oscillation (ENSO) has proven challenging, due in part to the limited number of high-magnitude floods available for study in the instrumental record.

View Article and Find Full Text PDF

Rapid and ongoing change creates novelty in ecosystems everywhere, both when comparing contemporary systems to their historical baselines, and predicted future systems to the present. However, the level of novelty varies greatly among places. Here we propose a formal and quantifiable definition of abiotic and biotic novelty in ecosystems, map abiotic novelty globally, and discuss the implications of novelty for the science of ecology and for biodiversity conservation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers analyzed flood sediments from two lakes to determine major flood events in the Mississippi River over the last 1,800 years.
  • The study suggests that periods of fewer large floods (A.D. 600 - A.D. 1200) allowed for agricultural growth and community expansion, leading to the rise of the Cahokia settlement around A.D. 1050.
  • After A.D. 1200, increased flooding contributed to political changes and population decline, ultimately resulting in the abandonment of Cahokia by A.D. 1350.
View Article and Find Full Text PDF

Climatic changes during the late Quaternary have resulted in substantial, often abrupt, rearrangements of terrestrial ecosystems, but the relationship between these environmental changes and prehistoric human culture and population size remains unclear. Using a database of archaeological radiocarbon dates alongside a network of paleoecological records (sedimentary pollen and charcoal) and paleoclimatic reconstructions, we show that periods of cultural and demographic change in the northeastern United States occurred at the same times as the major environmental-climatic transitions of that region. At 11.

View Article and Find Full Text PDF