Single-cell technologies have revealed the complexity of the tumour immune microenvironment with unparalleled resolution. Most clinical strategies rely on histopathological stratification of tumour subtypes, yet the spatial context of single-cell phenotypes within these stratified subgroups is poorly understood. Here we apply imaging mass cytometry to characterize the tumour and immunological landscape of samples from 416 patients with lung adenocarcinoma across five histological patterns.
View Article and Find Full Text PDFBackground: Immunotherapy has revolutionized clinical outcomes for patients suffering from lung cancer, yet relatively few patients sustain long-term durable responses. Recent studies have demonstrated that the tumor immune microenvironment fosters tumorous heterogeneity and mediates both disease progression and response to immune checkpoint inhibitors (ICI). As such, there is an unmet need to elucidate the spatially defined single-cell landscape of the lung cancer microenvironment to understand the mechanisms of disease progression and identify biomarkers of response to ICI.
View Article and Find Full Text PDFMetastasis is the leading cause of cancer-related deaths, and obesity is associated with increased breast cancer (BC) metastasis. Preclinical studies have shown that obese adipose tissue induces lung neutrophilia associated with enhanced BC metastasis to this site. Here we show that obesity leads to neutrophil-dependent impairment of vascular integrity through loss of endothelial adhesions, enabling cancer cell extravasation into the lung.
View Article and Find Full Text PDF