Publications by authors named "Samuel D Marks"

Epitaxial crystallization of complex oxides provides the means to create materials with precisely selected composition, strain, and orientation, thereby controlling their functionalities. Extending this control to nanoscale three-dimensional geometries can be accomplished via a three-dimensional analog of oxide solid-phase epitaxy, lateral epitaxial crystallization. The orientation of crystals within laterally crystallized SrTiO systematically changes from the orientation of the SrTiO substrate.

View Article and Find Full Text PDF

Material functionality can be strongly determined by structure extending only over nanoscale distances. The pair distribution function presents an opportunity for structural studies beyond idealized crystal models and to investigate structure over varying length scales. Applying this method with ultrafast time resolution has the potential to similarly disrupt the study of structural dynamics and phase transitions.

View Article and Find Full Text PDF

Optical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO thin film.

View Article and Find Full Text PDF

The collective dynamics of topological structures are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices, and these are promising for ultrafast electric-field control of topological orders.

View Article and Find Full Text PDF

Solid-phase epitaxy (SPE) and other three-dimensional epitaxial crystallization processes pose challenging structural and chemical characterization problems. The concentration of defects, the spatial distribution of elastic strain, and the chemical state of ions each vary with nanoscale characteristic length scales and depend sensitively on the gas environment and elastic boundary conditions during growth. The lateral or three-dimensional propagation of crystalline interfaces in SPE has nanoscale or submicrometer characteristic distances during typical crystallization times.

View Article and Find Full Text PDF

Spin electronic devices based on crystalline oxide layers with nanoscale thicknesses involve complex structural and magnetic phenomena, including magnetic domains and the coupling of the magnetism to elastic and plastic crystallographic distortion. The magnetism of buried nanoscale layers has a substantial impact on spincaloritronic devices incorporating garnets and other oxides exhibiting the spin Seebeck effect (SSE). Synchrotron hard x-ray nanobeam diffraction techniques combine structural, elemental, and magnetic sensitivity and allow the magnetic domain configuration and structural distortion to be probed in buried layers simultaneously.

View Article and Find Full Text PDF

Above-band-gap optical illumination of compressively strained BiFeO_{3} induces a transient reversible transformation from a state of coexisting tilted tetragonal-like and rhombohedral-like phases to an untilted tetragonal-like phase. Time-resolved synchrotron x-ray diffraction reveals that the transformation is induced by an ultrafast optically induced lattice expansion that shifts the relative free energies of the tetragonal-like and rhombohedral-like phases. The transformation proceeds at interfaces between regions of the tetragonal-like phase and regions of a mixture of tilted phases, consistent with the motion of a phase boundary.

View Article and Find Full Text PDF

A multimodal imaging instrument has been developed that integrates scanning near-field optical microscopy with nanofocused synchrotron X-ray diffraction imaging. The instrument allows for the simultaneous nanoscale characterization of electronic/near-field optical properties of materials together with their crystallographic structure, facilitating the investigation of local structure-property relationships. The design, implementation and operating procedures of this instrument are reported.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: