Publications by authors named "Samuel D Gale"

Visual masking can reveal the timescale of perception, but the underlying circuit mechanisms are not understood. Here we describe a backward masking task in mice and humans in which the location of a stimulus is potently masked. Humans report reduced subjective visibility that tracks behavioral deficits.

View Article and Find Full Text PDF

Neurophysiological differentiation (ND), a measure of the number of distinct activity states that a neural population visits over a time interval, has been used as a correlate of meaningfulness or subjective perception of visual stimuli. ND has largely been studied in non-invasive human whole-brain recordings where spatial resolution is limited. However, it is likely that perception is supported by discrete neuronal populations rather than the whole brain.

View Article and Find Full Text PDF
Article Synopsis
  • Higher-order thalamic nuclei, like the visual pulvinar in humans, are crucial for linking different brain regions and influencing cortical functions, but understanding their roles is complicated due to their intricate anatomy and cognitive involvement.
  • Researchers mapped the connections and recorded brain activity in a mouse equivalent of the pulvinar, called the lateral posterior thalamic nucleus (LP), identifying three subregions with distinct functions and connections related to visual processing.
  • The study found that the visual cortex and superior colliculus influence different LP subregions, which helps clarify the input sources, functional characteristics, and targets in these thalamic circuits, offering insights into how they operate in visual perception.
View Article and Find Full Text PDF

Different neuron types serve distinct roles in neural processing. Extracellular electrical recordings are extensively used to study brain function but are typically blind to cell identity. Morphoelectrical properties of neurons measured on spatially dense electrode arrays have the potential to distinguish neuron types.

View Article and Find Full Text PDF

The superficial layers of the superior colliculus (sSC) receive retinal input and project to thalamic regions, the dorsal lateral geniculate (dLGN) and lateral posterior (LP; or pulvinar) nuclei, that convey visual information to cortex. A critical step toward understanding the functional impact of sSC neurons on these parallel thalamo-cortical pathways is determining whether different classes of sSC neurons, which are known to respond to different features of visual stimuli, innervate overlapping or distinct thalamic targets. Here, we identified a transgenic mouse line that labels sSC neurons that project to dLGN but not LP.

View Article and Find Full Text PDF

Unlabelled: Neurons respond to specific features of sensory stimuli. In the visual system, for example, some neurons respond to motion of small but not large objects, whereas other neurons prefer motion of the entire visual field. Separate neurons respond equally to local and global motion but selectively to additional features of visual stimuli.

View Article and Find Full Text PDF

The superficial superior colliculus (sSC) occupies a critical node in the mammalian visual system; it is one of two major retinorecipient areas, receives visual cortical input, and innervates visual thalamocortical circuits. Nonetheless, the contribution of sSC neurons to downstream neural activity and visually guided behavior is unknown and frequently neglected. Here we identified the visual stimuli to which specific classes of sSC neurons respond, the downstream regions they target, and transgenic mice enabling class-specific manipulations.

View Article and Find Full Text PDF

A striking feature of the nervous system is that it shows extensive plasticity of structure and function that allows animals to adjust to changes in their environment. Neural activity plays a key role in mediating experience-dependent neural plasticity and, thus, creates a link between the external environment, the nervous system, and behavior. One dramatic example of neural plasticity is ongoing neurogenesis in the adult brain.

View Article and Find Full Text PDF

Dopaminergic neurons in mammals respond to rewards and reward-predicting cues, and are thought to play an important role in learning actions or sensory cues that lead to reward. The anatomical sources of input that drive or modulate such responses are not well understood; these ultimately define the range of behavior to which dopaminergic neurons contribute. Primary rewards are not the immediate objective of all goal-directed behavior.

View Article and Find Full Text PDF

Vocal learning in songbirds requires an anatomically discrete and functionally dedicated circuit called the anterior forebrain pathway (AFP). The AFP is homologous to cortico-basal ganglia-thalamo-cortical loops in mammals. The basal ganglia portion of this pathway, Area X, shares many features characteristic of the mammalian striatum and pallidum, including cell types and connectivity.

View Article and Find Full Text PDF

Area X is a songbird basal ganglia nucleus that is required for vocal learning. Both Area X and its immediate surround, the medial striatum (MSt), contain cells displaying either striatal or pallidal characteristics. We used pathway-tracing techniques to compare directly the targets of Area X and MSt with those of the lateral striatum (LSt) and globus pallidus (GP).

View Article and Find Full Text PDF

Dopamine has been implicated in mediating contextual modulation of motor behaviors and learning in many species. In songbirds, dopamine may act on the basal ganglia nucleus Area X to influence the neural activity that contributes to vocal learning and contextual changes in song variability. Neurons in midbrain dopamine centers, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), densely innervate Area X and show singing-related changes in firing rate.

View Article and Find Full Text PDF

The neurotransmitter dopamine plays important roles in motor control, learning, and motivation in mammals and probably other animals as well. The strong dopaminergic projection to striatal regions and more moderate dopaminergic projections to other regions of the telencephalon predominantly arise from midbrain dopaminergic neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA). Homologous dopaminergic cell groups in songbirds project anatomically in a manner that may allow dopamine to influence song learning or song production.

View Article and Find Full Text PDF

A line of dopamine-deficient (DD) mice was generated to allow selective restoration of normal dopamine signaling to specific brain regions. These DD floxed stop (DDfs) mice have a nonfunctional Tyrosine hydroxylase (Th) gene because of insertion of a NeoR gene flanked by lox P sites targeted to the first intron of the Th gene. DDfs mice have trace brain dopamine content, severe hypoactivity, and aphagia, and they die without intervention.

View Article and Find Full Text PDF
Article Synopsis
  • Developmental genetic analysis indicates that Nasonia vitripennis embryos rely more on zygotic gene products for axial patterning compared to Drosophila, mainly due to the role of hunchback.
  • A mutation in Nasonia hunchback leads to a significant headless mutant phenotype, emphasizing its critical function in anterior patterning, which surpasses the roles seen in Drosophila or Tribolium.
  • While Nasonia hunchback is expressed both maternally and zygotically, it shows earlier decay of maternal mRNA compared to Drosophila, which may limit maternal influence and highlights potential differences in their regulatory circuits.
View Article and Find Full Text PDF

Vocal learning in songbirds requires a basal ganglia circuit termed the anterior forebrain pathway (AFP). The AFP is not required for song production, and its role in song learning is not well understood. Like the mammalian striatum, the striatal component of the AFP, Area X, receives dense dopaminergic innervation from the midbrain.

View Article and Find Full Text PDF