The Bidirectional Reflectance Distribution Function (BRDF) is of substantial use in remote sensing, scene generation, and computer graphics, to describe optical scatter off realistic surfaces. This paper begins by summarizing our prior work in relating wave optics and geometric optics models, culminating with the Modified Cook-Torrance (MCT) model. The MCT model is evaluated here against aluminum, Infragold, and silver paint at various wavelengths in the IR.
View Article and Find Full Text PDFIn this work, a CCD-augmented complete angle scatter instrument (CASI) with a visible red laser source was used to measure the BRDF of a commercially available solar cell designed for small satellites, simultaneously capturing both in-plane and out-of-plane data with high angular resolution surrounding the specular direction. The measurements exhibited three distinct scatter features: a central specular peak, an offset specular peak, and a diffraction pattern. The two peaks were caused by different material surfaces with slightly different normal directions, and the diffraction pattern arose from periodically-spaced metal conducting bars running in one direction across the solar cell surface.
View Article and Find Full Text PDFWavefront shaping can refocus light after it reflects from an optically rough surface. One proposed use case of this effect is in indirect imaging; if any rough surface could be turned into an illumination source, objects out of the direct line of sight could be illuminated. In this paper, we demonstrate the superior performance of a genetic algorithm compared to other iterative feedback-based wavefront shaping algorithms in achieving reflective inverse diffusion for a focal plane system.
View Article and Find Full Text PDFA popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics.
View Article and Find Full Text PDFOf the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space.
View Article and Find Full Text PDF