Background: Immune checkpoint inhibitors (ICIs) improve survival outcomes in metastatic melanoma and non-small cell lung cancer (NSCLC). Preclinical evidence suggests that overexpression of cyclo-oxygenase-2 (COX2) in tumors facilitates immune evasion through prostaglandin E2 production and that COX inhibition synergizes with ICIs to promote antitumor T-cell activation. This study investigates whether concurrent COX inhibitor (COXi) use during ICI treatment compared with ICI alone is associated with improved time-to-progression (TTP), objective response rate (ORR) and overall survival (OS) in patients with metastatic melanoma and NSCLC.
View Article and Find Full Text PDFWe report a rare variant in mesenteric arterial anatomy: replacement of the right hepatic and common hepatic arteries to the SMA in a patient treated for hepatocellular carcinoma. The potential clinical implications of this unusual variation of celiaco-mesenteric anatomy will be discussed.
View Article and Find Full Text PDFGiven the rapidly expanding library of disease biomarkers and targeting agents, the number of unique targeted nanoparticles is growing exponentially. The high variability and expense of animal testing often makes it unfeasible to examine this large number of nanoparticles in vivo. This often leads to the investigation of a single formulation that performed best in vitro.
View Article and Find Full Text PDFRecent advances in material science and chemistry have led to the development of nanoparticles with diverse physicochemical properties, e.g. size, charge, shape, and surface chemistry.
View Article and Find Full Text PDFA wide variety of nanoparticle platforms are being developed for the diagnosis and treatment of malignancy. While many of these are passively targeted or rely on receptor-ligand interactions, metabolically directed nanoparticles provide a complementary approach. It is known that both primary and secondary events in tumorigenesis alter the metabolic profile of developing and metastatic cancers.
View Article and Find Full Text PDFGroup II introns are multidomain ribozymes that catalyze their own removal from pre-mRNA. The nucleophile for the first cleavage step is the 2'OH of a specific adenosine within domain 6 (D6), called the branch site. Mechanistic parallels and limited secondary structural similarity with the eukaryotic spliceosome lead many to speculate that the two systems have a common ancestry.
View Article and Find Full Text PDF