Publications by authors named "Samuel C Reddington"

The crystal structures of the thyroid-stimulating hormone receptor (TSHR) leucine-rich repeat domain (amino acids 22-260; TSHR260) in complex with a stimulating human monoclonal autoantibody (M22TM) and in complex with a blocking human autoantibody (K1-70™) have been solved. However, attempts to purify and crystallise free TSHR260, that is not bound to an autoantibody, have been unsuccessful due to the poor stability of free TSHR260. We now describe a TSHR260 mutant that has been stabilised by the introduction of six mutations (H63C, R112P, D143P, D151E, V169R and I253R) to form TSHR260-JMG55TM, which is approximately 900 times more thermostable than wild-type TSHR260.

View Article and Find Full Text PDF

We have created modified protein variants by introducing a non-canonical amino acid -azido-l-phenylalanine (azF) into defined positions for photochemically-induced covalent attachment to graphene. Attachment of GFP, TEM and cyt proteins was verified through a combination of atomic force and scanning tunnelling microscopy, resistance measurements, Raman data and fluorescence measurements. This method can in principle be extended to any protein which can be engineered in this way without adversely affecting its structural stability.

View Article and Find Full Text PDF

SpyTag is a peptide that forms a spontaneous amide bond with its protein partner SpyCatcher. This protein superglue is a broadly useful tool for molecular assembly, locking together biological building blocks efficiently and irreversibly in diverse architectures. We initially developed SpyTag and SpyCatcher by rational design, through splitting a domain from a Gram-positive bacterial adhesin.

View Article and Find Full Text PDF

Through the genetic incorporation of a single phenyl azide group into superfolder GFP (sfGFP) at residue 148 we provide a molecular description of how this highly versatile chemical handle can be used to positively switch protein function and either photochemistry or bioconjugation. Replacement of H148 with -azido-l-phenylalanine (azF) blue shifts the major excitation peak ∼90 nm by disrupting the H-bond and proton transfer network that defines the chromophore charged state. Bioorthogonal click modification with a simple dibenzylcyclooctyne or UV irradiation shifts the neutral-anionic chromophore equilibrium, switching fluorescence to the optimal ∼490 nm excitation.

View Article and Find Full Text PDF

We demonstrate an approach that allows attachment of single-stranded DNA (ssDNA) to a defined residue in a protein of interest (POI) so as to provide optimal and well-defined multicomponent assemblies. Using an expanded genetic code system, azido-phenylalanine (azF) was incorporated at defined residue positions in each POI; copper-free click chemistry was used to attach exactly one ssDNA at precisely defined residues. By choosing an appropriate residue, ssDNA conjugation had minimal impact on protein function, even when attached close to active sites.

View Article and Find Full Text PDF

SpyTag is a short peptide that forms an isopeptide bond upon encountering its protein partner SpyCatcher. This covalent peptide interaction is a simple and powerful tool for bioconjugation and extending what protein architectures are accessible. Here we review the origin and mechanism of SpyTag/SpyCatcher, focusing on recent innovative applications.

View Article and Find Full Text PDF

Genetic code reprogramming allows proteins to sample new chemistry through the defined and targeted introduction of non-natural amino acids (nAAs). Many useful nAAs are derivatives of the natural aromatic amino acid tyrosine, with the OH group replaced with useful but often bulkier substituents. Extending residue sampling by directed evolution identified positions in Green Fluorescent Protein tolerant to aromatic nAAs, including identification of novel sites that modulate fluorescence.

View Article and Find Full Text PDF

Altering a protein's backbone through amino acid deletion is a common evolutionary mutational mechanism, but is generally ignored during protein engineering primarily because its effect on the folding-structure-function relationship is difficult to predict. Using directed evolution, enhanced green fluorescent protein (EGFP) was observed to tolerate residue deletion across the breadth of the protein, particularly within short and long loops, helical elements, and at the termini of strands. A variant with G4 removed from a helix (EGFP(G4Δ)) conferred significantly higher cellular fluorescence.

View Article and Find Full Text PDF

Expanding the genetic code opens new avenues to modulate protein function in real time. By genetically incorporating photoreactive phenyl azide, the fluorescent properties of green fluorescent protein (GFP) can be modulated by light. Depending on the residue in GFP programmed to incorporate the phenyl azide, different effects on function and photochemical pathways are observed.

View Article and Find Full Text PDF

A genetically encoded precursor to an aryl nitrene, para-azidophenylalanine, was introduced site specifically into proteins to deduce if distinct environments were capable of caging a reactive organic intermediate. Following photolysis of mutant T4 lysozyme or green fluorescent proteins, EPR spectra showed, respectively, the presence of a triplet nitrene and an anilino radical.

View Article and Find Full Text PDF

GFP and a FRET compatible dye were used to assess the influence of genetically encoded aryl azide positioning on Click chemistry-based protein conjugation. While modification efficiency of the sampled mutants using a strain promoted reaction varied by as much as ∼10 fold, there was no simple correlation with accessibility of the aryl azide on GFP's surface. One labeled GFP mutant (Gln204AzPhe) exhibited high efficiency FRET (∼90%) and an unprecedented pseudo-Stokes shift of 126 nm.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhnauh5c9m0nucnvq3bq40khnl7cligoq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once