Publications by authors named "Samuel Bleckley"

We present new modifications to the Wuchty algorithm in order to better define and explore possible conformations for an RNA sequence. The new features, including parallelization, energy-independent lonely pair constraints, context-dependent chemical probing constraints, helix filters, and optional multibranch loops, provide useful tools for exploring the landscape of RNA folding. Chemical probing alone may not necessarily define a single unique structure.

View Article and Find Full Text PDF

The diverse landscape of RNA conformational space includes many canyons and crevices that are distant from the lowest minimum free energy valley and remain unexplored by traditional RNA structure prediction methods. A complete description of the entire RNA folding landscape can facilitate identification of biologically important conformations. The Crumple algorithm rapidly enumerates all possible non-pseudoknotted structures for an RNA sequence without consideration of thermodynamics while filtering the output with experimental data.

View Article and Find Full Text PDF

The secondary structure of encapsidated MS2 genomic RNA poses an interesting RNA folding challenge. Cryoelectron microscopy has demonstrated that encapsidated MS2 RNA is well-ordered. Models of MS2 assembly suggest that the RNA hairpin-protein interactions and the appropriate placement of hairpins in the MS2 RNA secondary structure can guide the formation of the correct icosahedral particle.

View Article and Find Full Text PDF

Viral genomic RNA adopts many conformations during its life cycle as the genome is replicated, translated, and encapsidated. The high-resolution crystallographic structure of the satellite tobacco mosaic virus (STMV) particle reveals 30 helices of well-ordered RNA. The crystallographic data provide global constraints on the possible secondary structures for the encapsidated RNA.

View Article and Find Full Text PDF