Publications by authors named "Samuel B St Clair"

Consumers exert top-down controls on dryland ecosystem function, but recent increases in fire activity may alter consumer communities in post-fire environments. Native consumers, including ants and rodents, likely have critical roles in defining post-fire plant community assembly and resilience to biological invasions. This study aimed to understand how western harvester ants (Pogonomyrmex occidentalis) that form mounds and large vegetation-free disks that significantly influence plant community structure in the Great Basin Desert respond to fire and rodent community abundance.

View Article and Find Full Text PDF

Human activities are increasing wildfires and livestock activity in arid ecosystems with potential implications for the spread of invasive grasses. The objective of this study was to test whether fire history and cattle activity alter soil resource gradients, thereby affecting patterns of Bromus rubens L. (red brome) invasion.

View Article and Find Full Text PDF

Climate change is causing larger wildfires and more extreme precipitation events in many regions. As these ecological disturbances increasingly coincide, they alter lateral fluxes of sediment, organic matter, and nutrients. Here, we report the stream chemistry response of watersheds in a semiarid region of Utah (USA) that were affected by a megafire followed by an extreme precipitation event in October 2018.

View Article and Find Full Text PDF

Human activities are changing patterns of ecological disturbance globally. In North American deserts, wildfire is increasing in size and frequency due to fuel characteristics of invasive annual grasses. Fire reduces the abundance and cover of native vegetation in desert ecosystems.

View Article and Find Full Text PDF

Biological invasions are responsive to changing wildfire regimes related to human activities that are altering biological communities. Our objective was to investigate how fire, rodent activity, and competition among plant species modify plant community structure, invasion patterns, and vulnerability to altered fire regimes. We imposed experimental fires, and reduced rodent density using fencing in a full factorial design and quantified competitive interactions among plant species in the northeast Mojave Desert that has experienced dramatic increases in plant invasion and fire in recent years.

View Article and Find Full Text PDF

Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top-down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities.

View Article and Find Full Text PDF

Human activities are altering patterns of ungulate herbivory and wildfire regimes globally with large potential impacts on plant community succession and ecosystem resilience. Aspen (Populus tremuloides) is a keystone species which co-exists with conifer species across temperate forests in North America. Aspen sucker regeneration which is the foundation of aspen-conifer forests succession is often a targeted food source by multiple ungulate species.

View Article and Find Full Text PDF

Atmospheric deposition of nitrogen (N) influences forest demographics and carbon (C) uptake through multiple mechanisms that vary among tree species. Prior studies have estimated the effects of atmospheric N deposition on temperate forests by leveraging forest inventory measurements across regional gradients in deposition. However, in the United States (U.

View Article and Find Full Text PDF

Ungulate herbivory can create strong top-down effects on forest recruitment, especially after fire. Defense strategies of tree species against ungulate herbivory include escape through vertical growth and resistance through the production of defense compounds. Using a four-way fence design and camera traps we characterized the differential impacts of ungulate herbivores (deer, elk, cattle) on aspen forest recruitment and plant defense responses and how they vary depending on the timing of herbivory.

View Article and Find Full Text PDF

Timing of herbivory or selection of specific plant tissues (mode of herbivory) by different ungulate herbivore species are likely to have important influences on plant defense strategies. In this study, we devised two different modes of simulated herbivory, representing a selective ungulate feeding strategy (defoliation: leaf tissue removal only) and a bulk feeding strategy (clipping: leaves, twigs and meristems taken together). We applied these contrasting herbivory treatments to juvenile aspen suckers (Populus tremuloides Michx.

View Article and Find Full Text PDF

Resource availability and biotic interactions control opportunities for the establishment and expansion of invasive species. Studies on biotic resistance to plant invasions have typically focused on competition and occasionally on herbivory, while resource-oriented studies have focused on water or nutrient pulses. Through synthesizing these approaches, we identify conditions that create invasion opportunities.

View Article and Find Full Text PDF

Climate change is restructuring plant populations and can result in range shifts depending on responses at various life stages of plants. In 2013, a widespread and episodic flowering event provided an opportunity to characterize how Joshua tree's reproductive success and population structure vary in response to the climate variability across its range. We examined the reproductive success and stand structure of 10 Joshua tree populations distributed across the Mojave Desert.

View Article and Find Full Text PDF

As invasive grasses and fire increase in frequency and extent in North American deserts, they have the potential to affect animal communities through bottom-up forces. We experimentally tested the effects of fire on rodent communities of the Great Basin and Mojave Deserts. Fire decreased the abundance, richness, and diversity of rodents in the Great Basin after fire.

View Article and Find Full Text PDF

In the spring of 2015, a severe outbreak of the necrotrophic pathogen Drepanopeziza (also known as Marssonina) spread across large portions of aspen (Populus tremuloides Michx.) forests in the western United States. Among adjacent stands, some were diseased and others were not.

View Article and Find Full Text PDF

Ecosystems are transformed by changes in disturbance regimes including wildfire and herbivory. Rodent consumers can have strong top-down effects on plant community assembly through seed predation, but their impacts on post-germination seedling establishment via seedling herbivory need better characterization, particularly in deserts. To test the legacy effects of fire history, and native rodent consumers on seedling establishment, we evaluated factorial combinations of experimental exclusion of rodents and fire history (burned vs.

View Article and Find Full Text PDF

Nutrients and plant secondary compounds in aspen (Populus tremuloides) may interact with nutrients in the surrounding vegetation to influence aspen use by herbivores. Thus, this study aimed to determine aspen intake and preference by sheep in response to supplementary nutrients or plant secondary compounds (PSC) present in aspen trees. Thirty-two lambs were randomly assigned to one of four molasses-based supplementary feeds to a basal diet of tall fescue hay (N = 8) during three experiments.

View Article and Find Full Text PDF

Herbivory by ungulates can affect forest regeneration success, but its long-term impacts on tree function and recruitment are less studied. We evaluated strategies of resistance, tolerance and vertical escape against ungulate herbivory by evaluating leaf traits (photosynthesis, morphology and chemistry) and growth rates of aspen in the presence and absence of ungulate herbivores 1, 2, 3 and 26 years after fires initiated aspen suckering. Over the initial 3-year period, ~60% of aspen stems in unfenced plots showed evidence of being browsed by ungulates.

View Article and Find Full Text PDF

Biotic resistance and disturbance are fundamental processes influencing plant invasion outcomes; however, the role of consumers in regulating the establishment and spread of plant invaders and how disturbance modifies biotic resistance by consumers is unclear. We document that fire in combination with experimental exclusion of rodent consumers shifted a native desert shrubland to a low-diversity, invasive annual grassland dominated by Bromus tectorum (cheatgrass). In contrast, burned plots with rodents present suppressed invasion by cheatgrass and developed into a more diverse forb community.

View Article and Find Full Text PDF

Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands.

View Article and Find Full Text PDF

Aspen (Populus tremuloides Michx.) has evolved a chemical defense system comprised of phenolic glycosides (PG), which effectively deter insect herbivory. However, much less is known about the role of PG and the nutritional quality of the associated plant community on aspen browse susceptibility to mammalian herbivores.

View Article and Find Full Text PDF

Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA.

View Article and Find Full Text PDF

Disturbance patterns strongly influence plant community structure. What remains less clear, particularly at a mechanistic level, is how changes in disturbance cycles alter successional outcomes in plant communities. There is evidence that fire suppression is resulting in longer fire return intervals in subalpine forests and that these lengthened intervals increase competitive interactions between aspen and conifer species.

View Article and Find Full Text PDF

Phenotypic variation in plant traits is strongly influenced by genetic and environmental factors. Over the life span of trees, developmental factors may also strongly influence leaf phenotypes. The objective of this study was to fill gaps in our understanding of developmental influences on patterns of phenotypic trait variation among different-aged ramets within quaking aspen (Populus tremuloides Michx.

View Article and Find Full Text PDF

In May 2007, a widespread frost event defoliated much of Utah's high elevation aspen. About 5 weeks later, the frost-defoliated aspen produced a second leaf flush. The objective of this study was to characterize changes in leaf morphology and function in re-flush leaves following frost defoliation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9si7ihl9i2n195k202f2snvaqkmcth6g): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once