Background: Although magnetic resonance imaging, particularly diffusion-weighted imaging, has increasingly been used as part of a multimodal approach to prognostication in patients who are comatose after cardiac arrest, the performance of quantitative analysis of apparent diffusion coefficient (ADC) maps, as compared to standard radiologist impression, has not been well characterized. This retrospective study evaluated quantitative ADC analysis to the identification of anoxic brain injury by diffusion abnormalities on standard clinical magnetic resonance imaging reports.
Methods: The cohort included 204 previously described comatose patients after cardiac arrest.
Traumatic brain injury (TBI) is a risk factor for neurodegeneration and cognitive decline, yet the underlying pathophysiologic mechanisms are incompletely understood. This gap in knowledge is in part related to the lack of analytic methods to account for cortical lesions in prior neuroimaging studies. The objective of this study was to develop a lesion detection tool and apply it to an investigation of longitudinal changes in brain structure among individuals with chronic TBI.
View Article and Find Full Text PDFBackground And Purpose: Thresholds for abnormal transcranial Doppler cerebrovascular reactivity (CVR) studies are poorly understood, especially for patients with cerebrovascular disease. Using a real-world cohort with cerebral arterial stenosis, we sought to describe a clinically significant threshold for carbon dioxide reactivity (CO2R) and vasomotor range (VMR).
Methods: CVR studies were performed during conditions of breathing room air normally, breathing 8% carbon dioxide air mixture, and hyperventilation.
Consciousness is comprised of arousal (i.e., wakefulness) and awareness.
View Article and Find Full Text PDFObjective: It is not currently possible to predict long-term functional dependency in patients with disorders of consciousness (DoC) after traumatic brain injury (TBI). Our objective was to fit and externally validate a prediction model for 1-year dependency in patients with DoC 2 weeks after TBI.
Methods: We included adults with TBI enrolled in TBI Model Systems (TBI-MS) or Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) studies who were not following commands at rehabilitation admission or 2 weeks post-injury, respectively.
Background And Objectives: The classic and singular pattern of distal greater than proximal upper extremity motor deficits after acute stroke does not account for the distinct structural and functional organization of circuits for proximal and distal motor control in the healthy CNS. We hypothesized that separate proximal and distal upper extremity clinical syndromes after acute stroke could be distinguished and that patterns of neuroanatomical injury leading to these 2 syndromes would reflect their distinct organization in the intact CNS.
Methods: Proximal and distal components of motor impairment (upper extremity Fugl-Meyer score) and strength (Shoulder Abduction Finger Extension score) were assessed in consecutively recruited patients within 7 days of acute stroke.
Objectives: Status epilepticus (SE) is associated with significantly higher morbidity and mortality than isolated seizures. Our objective was to identify clinical diagnoses and rhythmic and periodic electroencephalogram patterns (RPPs) associated with SE and seizures.
Design: Retrospective cohort study.
Importance: There are currently no models that predict long-term functional dependency in patients with disorders of consciousness (DoC) after traumatic brain injury (TBI).
Objective: Fit, test, and externally validate a prediction model for 1-year dependency in patients with DoC 2 or more weeks after TBI.
Design: Secondary analysis of patients enrolled in TBI Model Systems (TBI-MS, 1988-2020, Discovery Sample) or Transforming Research and Clinical Knowledge in TBI (TRACK-TBI, 2013-2018, Validation Sample) and followed 1-year post-injury.
Sports related head injuries can cause transient neurological events including loss of consciousness and dystonic posturing. However, it is unknown why head impacts that appear similar produce distinct neurological effects. The biomechanical effect of impacts can be estimated using computational models of strain within the brain.
View Article and Find Full Text PDFNew techniques for individualized assessment of white matter integrity are needed to detect traumatic axonal injury (TAI) and predict outcomes in critically ill patients with acute severe traumatic brain injury (TBI). Diffusion MRI tractography has the potential to quantify white matter microstructure in vivo and has been used to characterize tract-specific changes following TBI. However, tractography is not routinely used in the clinical setting to assess the extent of TAI, in part because focal lesions reduce the robustness of automated methods.
View Article and Find Full Text PDFIntroduction: Animal experiments recently demonstrated that replacing urinary loses with crystalloid diminishes the therapeutic effect of mannitol by reducing the increase in osmolality. We aimed to investigate whether this effect is similarly seen in in brain-injured patients by studying the association between total body fluid balance (TBB) and the osmolar response to mannitol.
Methods: We performed a retrospective cohort study of adult patients with acute brain injury between 2015 and 2021 who received ≥ 2 doses of mannitol within 8 hours and no intercurrent concentrated saline solution.
Traumatic brain injury is a complex and highly heterogeneous disease due to the host of concomitant injuries that may accompany the initial insult. Due to the dynamic interplay between the injuries that may arise, the management of these injuries is challenging. In a small subset of patients with traumatic brain injury, cerebral vascular injury may occur, which presents its own diagnostic and therapeutic challenges.
View Article and Find Full Text PDFDisorder of consciousness (DoC) after severe brain injury presents numerous challenges to clinicians, as the diagnosis, prognosis, and management are often uncertain. Magnetic resonance imaging (MRI) has long been used to evaluate brain structure in patients with DoC. More recently, advances in MRI technology have permitted more detailed investigations of the brain's structural integrity (via diffusion MRI) and function (via functional MRI).
View Article and Find Full Text PDFPurpose: Given the efficacy of endovascular thrombectomy (EVT), optimizing systems of delivery is crucial. Magnetic resonance imaging (MRI) is the gold standard for evaluating tissue viability but may require more time to obtain and interpret. We sought to identify determinants of arrival-to-puncture time for patients who underwent MRI-based EVT selection in a real-world setting.
View Article and Find Full Text PDFImportance: Increased risk of neurological and psychiatric conditions after traumatic brain injury (TBI) is well-defined. However, cardiovascular and endocrine comorbidity risk after TBI in individuals without these comorbidities and associations with post-TBI mortality have received little attention.
Objective: To assess the incidence of cardiovascular, endocrine, neurological, and psychiatric comorbidities in patients with mild TBI (mTBI) or moderate to severe TBI (msTBI) and analyze associations between post-TBI comorbidities and mortality.
Background And Objectives: Disorders of consciousness, EEG background suppression, and epileptic seizures are associated with poor outcome after cardiac arrest. Our objective was to identify the distribution of diffusion MRI-measured anoxic brain injury after cardiac arrest and to define the regional correlates of disorders of consciousness, EEG background suppression, and seizures.
Methods: We analyzed patients from a single-center database of unresponsive patients who underwent diffusion MRI after cardiac arrest (n = 204).
Background And Objectives: In patients with severe coronavirus disease 2019 (COVID-19), disorders of consciousness (DoC) have emerged as a serious complication. The prognosis and pathophysiology of COVID-DoC remain unclear, complicating decisions about continuing life-sustaining treatment. We describe the natural history of COVID-DoC and investigate its associated brain connectivity profile.
View Article and Find Full Text PDFBackground: Angiographic vasospasm after aneurysmal subarachnoid hemorrhage (aSAH) is associated with delayed cerebral ischemia (DCI)-related cerebral infarction (radiological DCI) and worsened neurological outcome. Transcranial Doppler (TCD) measurements of cerebral blood flow velocity are commonly used after aSAH to screen for vasospasm; however, their association with cerebral infarction is not well characterized. We sought to determine whether time-varying TCD-measured vasospasm severity is associated with cerebral infarction and investigate the performance characteristics of different time/severity cutoffs for predicting cerebral infarction.
View Article and Find Full Text PDFBackground: Cerebral edema is associated with worse outcome after acute stroke; however, the minimum clinically relevant threshold remains unknown. This study aimed to identify the minimal degree of midline shift (MLS) that predicts outcome in a cohort encompassing a broad range of patients with acute stroke.
Methods: Patient-level data from six acute stroke clinical trials were combined with endovascular thrombectomy registries from two academic referral centers, generating a combined cohort of 1977 patients.
Background/objective: For patients with disorders of consciousness (DoC) and their families, the search for new therapies has been a source of hope and frustration. Almost all clinical trials in patients with DoC have been limited by small sample sizes, lack of placebo groups, and use of heterogeneous outcome measures. As a result, few therapies have strong evidence to support their use; amantadine is the only therapy recommended by current clinical guidelines, specifically for patients with DoC caused by severe traumatic brain injury.
View Article and Find Full Text PDF