Publications by authors named "Samuel Anyaso-Samuel"

In many cluster-correlated data analyses, informative cluster size poses a challenge that can potentially introduce bias in statistical analyses. Different methodologies have been introduced in statistical literature to address this bias. In this study, we consider a complex form of informativeness where the number of observations corresponding to latent levels of a unit-level continuous covariate within a cluster is associated with the response variable.

View Article and Find Full Text PDF

Urban environments, characterized by bustling mass transit systems and high population density, host a complex web of microorganisms that impact microbial interactions. These urban microbiomes, influenced by diverse demographics and constant human movement, are vital for understanding microbial dynamics. We explore urban metagenomics, utilizing an extensive dataset from the Metagenomics & Metadesign of Subways & Urban Biomes (MetaSUB) consortium, and investigate antimicrobial resistance (AMR) patterns.

View Article and Find Full Text PDF

Introduction: Obesity affects millions of Americans. The vagal nerves convey the degree of stomach fullness to the brain via afferent visceral fibers. Studies have found that vagal nerve stimulation (VNS) promotes reduced food intake, causes weight loss, and reduces cravings and appetite.

View Article and Find Full Text PDF

Multistate current status data presents a more severe form of censoring due to the single observation of study participants transitioning through a sequence of well-defined disease states at random inspection times. Moreover, these data may be clustered within specified groups, and informativeness of the cluster sizes may arise due to the existing latent relationship between the transition outcomes and the cluster sizes. Failure to adjust for this informativeness may lead to a biased inference.

View Article and Find Full Text PDF

Informative cluster size (ICS) arises in situations with clustered data where a latent relationship exists between the number of participants in a cluster and the outcome measures. Although this phenomenon has been sporadically reported in the statistical literature for nearly two decades now, further exploration is needed in certain statistical methodologies to avoid potentially misleading inferences. For inference about population quantities without covariates, inverse cluster size reweightings are often employed to adjust for ICS.

View Article and Find Full Text PDF

Microbiome samples harvested from urban environments can be informative in predicting the geographic location of unknown samples. The idea that different cities may have geographically disparate microbial signatures can be utilized to predict the geographical location based on city-specific microbiome samples. We implemented this idea first; by utilizing standard bioinformatics procedures to pre-process the raw metagenomics samples provided by the CAMDA organizers.

View Article and Find Full Text PDF