Publications by authors named "Samuel Alvarez-Arguedas"

The nasal, oropharyngeal, and bronchial mucosa are primary contact points for airborne pathogens like (Mtb), SARS-CoV-2, and influenza virus. While mucosal surfaces can function as both entry points and barriers to infection, mucosa-associated lymphoid tissues (MALT) facilitate early immune responses to mucosal antigens. MALT contains a variety of specialized epithelial cells, including a rare cell type called a microfold cell (M cell) that functions to transport apical antigens to basolateral antigen-presenting cells, a crucial step in the initiation of mucosal immunity.

View Article and Find Full Text PDF

(Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance.

View Article and Find Full Text PDF

(Mtb) can enter the body through multiple routes, including via specialized transcytotic cells called microfold cells (M cell). However, the mechanistic basis for M cell entry remains undefined. Here, we show that M cell transcytosis depends on the Mtb Type VII secretion machine and its major virulence factor EsxA.

View Article and Find Full Text PDF

Intravesical instillation of bacillus Calmette-Guérin (BCG) has been a first-line therapy for non-muscle-invasive bladder cancer for the last 4 decades. However, this treatment causes serious adverse events in a significant number of patients and a substantial percentage of recurrence episodes. MTBVAC is a live-attenuated vaccine derived from a Mycobacterium tuberculosis clinical isolate and is currently under evaluation in clinical trials to replace BCG as a tuberculosis vaccine.

View Article and Find Full Text PDF

MTBVAC is a live-attenuated Mycobacterium tuberculosis vaccine, currently under clinical development, that contains the major antigens ESAT6 and CFP10. These antigens are absent from the current tuberculosis vaccine, BCG. Here we compare the protection induced by BCG and MTBVAC in several mouse strains that naturally express different MHC haplotypes differentially recognizing ESAT6 and CFP10.

View Article and Find Full Text PDF

Some of the most promising novel tuberculosis vaccine strategies currently under development are based on respiratory vaccination, mimicking the natural route of infection. In this work, we have compared pulmonary and subcutaneous delivery of BCG vaccine in the tuberculosis-susceptible DBA/2 mouse strain, a model in which parenterally administered BCG vaccine does not protect against tuberculosis. Our data show that intranasally but not subcutaneously administered BCG confers robust protection against pulmonary tuberculosis challenge.

View Article and Find Full Text PDF

The immunomodulatory capacities of mesenchymal stem cells (MSCs) have made them the subject of increased clinical interest for tissue regeneration and repair. We have studied the immunomodulatory capacity of equine MSCs derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) in cocultures with allogeneic peripheral blood mononuclear cells (PBMCs). Different isoforms and concentrations of phytohaemaglutinin (PHA) were tested to determine the best stimulation conditions for PBMC proliferation and a proliferation assay was performed for 7 days to determine the optimal day of stimulation of PBMCs.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BM-MSCs) are widely used in regenerative medicine in horses. Most of the molecular characterisations of BM-MSCs have been made at 20% O(2), a higher oxygen level than the one surrounding the cells inside the bone marrow. The present work compares the lifespan and the tri-lineage potential of equine BM-MSCs expanded in normoxia (20% O(2)) and hypoxia (5% O(2)).

View Article and Find Full Text PDF