Allosteric ligands of various G-protein-coupled receptors are being increasingly described and are providing important advances in the development of ligands with novel selectivity and efficacy. These unusual properties allow expanded opportunities for pharmacologic studies and treatment. Unfortunately, no allosteric ligands are yet described for the bombesin receptor family (BnRs), which are proposed to be involved in numerous physiologic/pathophysiological processes in both the central nervous system and peripheral tissues.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are increasingly being considered as possible therapeutic targets in cancers. Activation of GPCR on tumors can have prominent growth effects, and GPCRs are frequently over-/ectopically expressed on tumors and thus can be used for targeted therapy. CNS/neural tumors are receiving increasing attention using this approach.
View Article and Find Full Text PDFDespite recent advances in treatment of non-small cell lung cancer (NSCLC), prognosis still remains poor and new therapeutic approaches are needed. Studies demonstrate the importance of the EGFR/HER-receptor family in NSCLC growth, as well as that of other tumors. Recently, HER3 is receiving increased attention because of its role in drug resistance and aggressive growth.
View Article and Find Full Text PDFBombesin (Bn) receptor subtype 3(BRS-3) is an orphan G-protein-coupled receptor of the Bn family, which does not bind any natural Bn peptide with high affinity. Receptor knockout studies show that the animals develop diabetes, obesity, altered temperature control, and other central nervous system (CNS)/endocrine/gastrointestinal changes. It is present in CNS, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology, as well as its receptor localization/pharmacology is largely unknown, in part due to the lack of a convenient, specific, direct radiolabeled ligand.
View Article and Find Full Text PDFHuman bombesin receptors, GRPR and NMBR, are two of the most frequently overexpressed G-protein-coupled-receptors by lung-cancers. Recently, GRPR/NMBR are receiving considerable attention because they act as growth factor receptors often in an autocrine manner in different lung-cancers, affect tumor angiogenesis, their inhibition increases the cytotoxic potency of tyrosine-kinase inhibitors reducing lung-cancer cellular resistance/survival and their overexpression can be used for sensitive tumor localization as well as to target cytotoxic agents to the cancer. The orphan BRS-3-receptor, because of homology is classified as a bombesin receptor but has received little attention, despite the fact that it is also reported in a number of studies in lung-cancer cells and has growth effects in these cells.
View Article and Find Full Text PDFBRS-3 has an important role in glucose homeostasis. Its expression was reduced in skeletal muscle from obese and/or diabetic patients, and BRS-3 KO-mice developed obesity. In this work, focused on rat/human adipose tissue, BRS-3 gene-expression was lower than normal-levels in hyperlipidemic, type-2-diabetic (T2D), and type-1-diabetic rats and also in obese (OB) and T2D patients.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
July 2017
While peptide antagonists for the gastrin-releasing peptide receptor (BBR), neuromedin B receptor (BBR), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BBR, BBR, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells.
View Article and Find Full Text PDFEndothelin (ET)-1 is an important peptide in cancer progression stimulating cellular proliferation, tumor angiogenesis and metastasis. ET-1 binds with high affinity to the ET receptor (R) and ETR on cancer cells. High levels of tumor ET-1 and ETR are associated with poor survival of lung cancer patients.
View Article and Find Full Text PDFBombesin-receptor-subtype-3 (BB3 receptor) is a G-protein-coupled-orphan-receptor classified in the mammalian Bombesin-family because of high homology to gastrin-releasing peptide (BB2 receptor)/neuromedin-B receptors (BB1 receptor). There is increased interest in BB3 receptor because studies primarily from knockout-mice suggest it plays roles in energy/glucose metabolism, insulin-secretion, as well as motility and tumor-growth. Investigations into its roles in physiological/pathophysiological processes are limited because of lack of selective ligands.
View Article and Find Full Text PDFBombesin receptor subtype-3 (BRS-3) is an orphan G-protein coupled receptor which is classified in the bombesin receptor (BnR) family with which it shares high homology. It is present widely in the central nervous system and peripheral tissues and primarily receptor-knockout studies suggest it is involved in metabolic-glucose-insulin homeostasis, feeding and other CNS behaviors, gastrointestinal motility and cancer growth. However, the role of BRS-3 physiologically or in pathologic disorders has been not well defined because the natural ligand is unknown.
View Article and Find Full Text PDFThis following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147].
View Article and Find Full Text PDFPituitary adenylate cyclase-activating polypeptide (PACAP) has widespread physiological/pathophysiological actions and there is increased interest for its use therapeutically, especially in the CNS (neuroprotection). Unfortunately, no selective PACAP-analogs exist for PACAP-preferring PAC1-receptors, primarily because of its high sequence identity to VIP and particularly, because of the inability of structure-function studies to separate the pharmacophore of PAC1-R from VPAC1-R, which has high affinity for PACAP and VIP. The present study attempted to develop PAC1-R-selective agonists primarily by making conformationally restricted PACAP-analogs in positions important for receptor-selectivity/affinity.
View Article and Find Full Text PDFBombesin receptor subtype (BRS)-3 is a G protein coupled receptor (GPCR) for the bombesin (BB)-family of peptides. BRS-3 is an orphan GPCR and little is known of its physiological role due to the lack of specific agonists and antagonists. PD168368 is a nonpeptide antagonist for the neuromedin B (NMB) receptor (R) whereas PD176252 is a nonpeptide antagonist for the gastrin releasing peptide (GRP) R and NMBR but not BRS-3.
View Article and Find Full Text PDFAims: The mechanism by which SR48692 inhibits non-small cell lung cancer (NSCLC) proliferation was investigated.
Main Methods: The ability of SR48692 to inhibit the proliferation of NSCLC cell lines NCI-H1299 and A549 was investigated in vitro in the presence or absence of neurotensin (NTS). The ability of NTS to cause epidermal growth factor receptor (EGFR) transactivation was investigated by Western blot using NSCLC cells and various inhibitors.
Bombesin-receptor-subtype-3 (BRS-3) is an orphan G-protein-coupled receptor of the bombesin (Bn) family whose natural ligand is unknown and which does not bind any natural Bn-peptide with high affinity. It is present in the central nervous system, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology is largely unknown because of the lack of selective ligands. Recently, MK-5046 [(2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-{[1-(trifluoromethyl)cyclopropyl]methyl}-1H-imidazol-2-yl)propan-2-ol] and Bantag-1 [Boc-Phe-His-4-amino-5-cyclohexyl-2,4,5-trideoxypentonyl-Leu-(3-dimethylamino) benzylamide N-methylammonium trifluoroacetate], a nonpeptide agonist and a peptide antagonist, respectively, for BRS-3 have been described, but there have been limited studies on their pharmacology.
View Article and Find Full Text PDFBRS-3 KO-mice developed obesity and unbalanced glucose metabolism, suggesting an important role of BRS-3 receptor in glucose homeostasis. We explored BRS-3 expression in skeletal muscle from normal, obese or type-2 diabetic (T2D) patients, and the effect of [D-Phe(6), β-Ala(11),Phe(13),Nle(14)]bombesin(6-14)-BRS-3-agonist-peptide (BRS-3-AP) - on glucose-related effects, before or after BRS-3 gene silencing. In muscle tissue and primary cultured myocytes from altered metabolic states, BRS-3 gene/protein expressions were down-regulated.
View Article and Find Full Text PDFThere is increased interest in the Bn-receptor family because they are frequently over/ectopically expressed by tumors and thus useful as targets for imaging or receptor-targeted-cytotoxicity. The synthetic Bn-analog, [D-Tyr(6), β-Ala(11), Phe(13), Nle(14)]Bn(6-14) [Univ.Lig] has the unique property of having high affinity for all three human BNRs (GRPR, NMBR, BRS-3), and thus could be especially useful for this approach.
View Article and Find Full Text PDFBackground: Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets.
View Article and Find Full Text PDFThe mammalian bombesin (Bn)-receptor family [gastrin-releasing peptide-receptor (GRPR-receptor), neuromedin B-receptor (NMB receptor)], their natural ligands, GRP/NMB, as well as the related orphan receptor, BRS-3, are widely distributed, and frequently overexpressed by tumors. There is increased interest in agonists for this receptor family to explore their roles in physiological/pathophysiological processes, and for receptor-imaging/cytotoxicity in tumors. However, there is minimal data on human pharmacology of Bn receptor agonists and most results are based on nonhuman receptor studies, particular rodent-receptors, which with other receptors frequently differ from human-receptors.
View Article and Find Full Text PDFThe orphan receptor, bombesin receptor subtype-3(BRS-3) is a G-protein-coupled receptor classified in the bombesin (Bn) receptor family because of its high homology (47-51%) with other members of this family [gastrin-releasing peptide receptor [GRPR] and neuromedin B receptor [NMBR]]. There is increasing interest in BRS-3, because primarily from receptor knockout studies, it seems important in energy metabolism, glucose control, insulin secretion, motility and tumor growth. Pharmacological tools to study the role of BRS-3 in physiology/pathophysiology are limited because the natural ligand is unknown and BRS-3 has low affinity for all naturally occurring Bn-related peptides.
View Article and Find Full Text PDFThe mammalian bombesin (Bn) peptides, neuromedin B (NMB) and gastrin-releasing peptide (GRP), have widespread actions in many tissues, and their effects are mediated by two closely related G-protein-coupled receptors, the NMBR and GRPR. Little is known about the structural determinants of NMBR selectivity for NMB, in contrast to GRP selectivity for the GRPR, which has been extensively studied. To provide insight, chimeric NMBR-GRPR loss-of-affinity and gain-of-affinity mutants were made, as well as NH(2)-terminally truncated NMBR and point mutants using site-directed mutagenesis.
View Article and Find Full Text PDFThe mammalian bombesin (Bn) peptides neuromedin B (NMB) and gastrin-releasing peptide (GRP) actions are mediated by two receptors (NMB-receptor, GRP-receptor) which are widely distributed in the GI tract and CNS. From primarily animal studies NMB/GRP-receptor activation has physiological/pathophysiological effects in the CNS and GI tract including stimulating of growth of cancers and normal tissues. Whereas these Bn-receptors' effects have been extensively studied in nonhuman cells and animals, little is known of the physiological/pathological role(s) in humans, largely due to lack of potent antagonists.
View Article and Find Full Text PDFHemiasterlin (Hem) and dolastatin (Dol) are marine natural products which are cytotoxic for cancer cells. Hem, a tripeptide, and Dol, a hexapeptide, were conjugated with linkers (L) to the universal BB agonist DPhe-Gln-Trp-Ala-Val-betaAla-His-Phe-Nle-NH2(BA1) and the effects of the Hem-BB and Dol-BB conjugates investigated on NCI-H1299 lung cancer cells. Hem-LA-BA1 and Hem-LB-BA1 inhibited specific (125I-Tyr4)BB binding to NCI-H1299 cells, which have BB2 receptors (R), with IC50 values of 15 and 25 nM, respectively.
View Article and Find Full Text PDFLittle is known about the role of arrestins in gastrointestinal hormone/neurotransmitter receptor endocytosis. With other G protein-coupled receptors, arrestins induce G protein-uncoupling and receptor endocytosis. In this study, we used arrestin wild-type and dominant-negative mutant constructs to analyze the arrestin dependence of endocytosis and desensitization of the gastrin-releasing peptide receptor (GRP-R).
View Article and Find Full Text PDFBombesin receptor subtype (BRS)-3, a G-protein-coupled orphan receptor, shares 51% identity with the mammalian bombesin (Bn) receptor for gastrin-releasing peptide. There is increasing interest in BRS-3 because it is important in energy metabolism, glucose control, motility, and tumor growth. BRS-3 has low affinity for all Bn-related peptides; however, recently synthetic high-affinity agonists, [d-Tyr(6)/d-Phe(6),betaAla(11),Phe(13),Nle(14)]Bn-(6-14), were described, but they are nonselective for BRS-3 over other Bn receptors.
View Article and Find Full Text PDF