Fluorescent spatial sequencing brings next-generation sequencing into a new realm capable of identifying nucleic acids in the cell's natural environment. For the first time, scientists are able to multiplex the assignment of specific locations to hundreds of transcriptional targets and lay the foundation for understanding how genetic changes control the fate of each cell within the tissue microenvironment. In this perspective, we discuss the capabilities of fluorescent spatial sequencing in the context of other spatial imaging technologies and describe how these new technologies offer a data-rich, multiomic solution to many research applications.
View Article and Find Full Text PDFDespite evoked potentials' (EP) ubiquity in research and clinical medicine, insights are limited to gross brain dynamics as it remains challenging to map surface potentials to their sources in specific cortical regions. Multiple sources cancellation due to cortical folding and cross-talk obscures close sources, e.g.
View Article and Find Full Text PDFUnderstanding the spatial organization of gene expression with single-nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here, we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked complementary DNA (cDNA) amplicons are sequenced within a biological sample. Using 30-base reads from 8102 genes in situ, we examined RNA expression and localization in human primary fibroblasts with a simulated wound-healing assay.
View Article and Find Full Text PDFNeuronal regeneration occurs naturally in a few restricted mammalian brain regions, but its functional significance remains debated. Here we search for unique features in the synaptic outputs made by adult-born granule cell interneurons in the mouse olfactory bulb using optogenetic targeting of specific neuronal ages. We find that adult-born interneurons are resistant to presynaptic GABA(B)-mediated depression of GABA release compared with interneurons born just after birth that exhibit strong GABA(B) neuromodulation.
View Article and Find Full Text PDFBrain-computer interfaces (BCIs) are now feasible for use as an alternative control option for those with severe motor impairments. The P300 component of the evoked potential has proven useful as a control signal. Individuals do not need to be trained to produce the signal, and it is fairly stable and has a large evoked potential.
View Article and Find Full Text PDF