ACS Appl Mater Interfaces
July 2024
Lowering the operating temperature of solid oxide fuel cells (SOFCs) and electrolysis cells (SOECs) to reduce system cost and increase lifetime is the key to widely deploy this highly efficient energy technology, but the high cathode polarization losses at low temperatures limit overall cell performance. Here we demonstrate that by engineering a universal ceria-based scaffold with infiltrated nanoscale electrocatalysts, a low cathode polarization <0.25 Ω·cm with remarkably high performance 1 W/cm at 550 °C is achieved.
View Article and Find Full Text PDF