RNA Polymerase II (Pol II) is a multi-subunit complex that undergoes covalent modifications as transcription proceeds through genes and enhancers. Rate-limiting steps of transcription control Pol II recruitment, site and degree of initiation, pausing duration, productive elongation, nascent transcript processing, transcription termination, and Pol II recycling. Here, we develop Precision Run-On coupled to Immuno-Precipitation sequencing (PRO-IP-seq), which double-selects nascent RNAs and transcription complexes, and track phosphorylation of Pol II C-terminal domain (CTD) at nucleotide-resolution.
View Article and Find Full Text PDFReprogramming of transcription is critical for the survival under cellular stress. Heat shock has provided an excellent model to investigate nascent transcription in stressed cells, but the molecular mechanisms orchestrating RNA synthesis during other types of stress are unknown. We utilized PRO-seq and ChIP-seq to study how Heat Shock Factors, HSF1 and HSF2, coordinate transcription at genes and enhancers upon oxidative stress and heat shock.
View Article and Find Full Text PDFHeat shock instantly reprograms transcription. Whether gene and enhancer transcription fully recover from stress and whether stress establishes a memory by provoking transcription regulation that persists through mitosis remained unknown. Here, we measured nascent transcription and chromatin accessibility in unconditioned cells and in the daughters of stress-exposed cells.
View Article and Find Full Text PDFCellular stress triggers reprogramming of transcription, which is required for the maintenance of homeostasis under adverse growth conditions. Stress-induced changes in transcription include induction of cyto-protective genes and repression of genes related to the regulation of the cell cycle, transcription and metabolism. Induction of transcription is mediated through the activation of stress-responsive transcription factors that facilitate the release of stalled RNA polymerase II and so allow for transcriptional elongation.
View Article and Find Full Text PDFThe extracellular molecular chaperone heat shock protein 90 (eHSP90) stabilizes protease client the matrix metalloproteinase 2 (MMP2), leading to tumor cell invasion. Although co-chaperones are critical modulators of intracellular HSP90:client function, how the eHSP90:MMP2 complex is regulated remains speculative. Here, we report that the tissue inhibitor of metalloproteinases-2 (TIMP2) is a stress-inducible extracellular co-chaperone that binds to eHSP90, increases eHSP90 binding to ATP, and inhibits its ATPase activity.
View Article and Find Full Text PDFDefects in cellular protein homeostasis are associated with many severe and prevalent pathological conditions such as neurodegenerative diseases, muscle dystrophies, and metabolic disorders. One way to counteract these defects is to improve the protein homeostasis capacity through induction of the heat shock response. Despite numerous attempts to develop strategies for chemical activation of the heat shock response by heat shock transcription factor 1 (HSF1), the underlying mechanisms of drug candidates' mode of action are poorly understood.
View Article and Find Full Text PDFUnless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs).
View Article and Find Full Text PDF