The design of artificial solid eletroctrolyte interphase is an important task to minimize capacity losses in Li-ion batteries. Herein, TiO created through atomic layer deposition was used as an artificial SEI on Si nanoparticles. Such coating led to substantial improvement of cycling stability when evaluated with FEC-free electrolyte.
View Article and Find Full Text PDFAdding silicon (Si) to graphite (Gr) anodes is an effective approach for boosting the energy density of lithium-ion batteries, but it also triggers mechanical instability due to Si volume changes upon (de)lithiation reactions. In this work, component-specific (de)lithiation dynamics on Si-rich (30 and 70 wt.% Si) SiGr anodes at various charge/discharge C-rates are unveiled and compared to a graphite-only electrode (100Gr) via operando synchrotron X-ray diffraction coupled with differential capacity plots analysis.
View Article and Find Full Text PDFAmorphous silicon nanoparticles were synthesized through pyrolysis of silane gas at temperatures ranging from 575 to 675 °C. According to the used temperature and silane concentration, two distinct types of particles can be obtained: at 625 °C, spherical particles with smooth surface and a low degree of aggregation, but at a higher temperature (650 °C) and lower silane concentration, particles with extremely rough surfaces and high degree of aggregation are found. This demonstrates the importance of the synthesis temperature on the morphology of silicon particles.
View Article and Find Full Text PDFCarbon deposition on nickel anodes degrades the performance of solid oxide fuel cells that utilize hydrocarbon fuels. Nickel anodes with BaO nanoclusters deposited on the surface exhibit improved performance by delaying carbon deposition (i.e.
View Article and Find Full Text PDFInformation from ex situ characterization can fall short in describing complex materials systems simultaneously exposed to multiple external stimuli. Operando X-ray absorption spectroscopy (XAS) was used to probe the local atomistic and electronic structure of specific elements in a La0.6Sr0.
View Article and Find Full Text PDF