Am J Physiol Heart Circ Physiol
December 2013
Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N(G)-monomethyl-L-arginine (L-NMMA), attenuates hypoxia-induced vasodilation.
View Article and Find Full Text PDFObesity is a disease of oxidative stress (OS). Acute hyperoxia (breathing 100 % O(2)) can evoke coronary vasoconstriction by the oxidative quenching of nitric oxide (NO). To examine if weight loss would alter the hyperoxia-related coronary constriction seen in obese adolescents, we measured the coronary blood flow velocity (CBV) response to hyperoxia using transthoracic Doppler echocardiography before and after a 4-week diet and exercise regimen in 6 obese male adolescents (age 13-17 years, BMI 36.
View Article and Find Full Text PDFSupplementary oxygen is commonly administered in current medical practice. Recently it has been suggested that hyperoxia causes acute oxidative stress and produces prompt and substantial changes in coronary resistance in patients with ischemic heart disease. In this report, we examined whether the effects of hyperoxia on coronary blood velocity (CBV) would be associated with a reduction in myocardial function.
View Article and Find Full Text PDF