Publications by authors named "Samson Jamesdaniel"

Introduction: Exposure to heavy metal lead can cause serious health effects such as developmental neurotoxicity in infants, cognitive impairment in children, and cardiovascular and nephrotoxic effects in adults. Hearing loss is one of the toxic effects induced by exposure to lead. Previous studies demonstrated that exposure to lead causes oxidative stress in the cochlea and disrupts ribbon synapses in the inner hair cells.

View Article and Find Full Text PDF

The disruption of ribbon synapses in the cochlea impairs the transmission of auditory signals from the cochlear sensory receptor cells to the auditory cortex. Although cisplatin-induced loss of ribbon synapses is well-documented, and studies have reported nitration of cochlear proteins after cisplatin treatment, yet the underlying mechanism of cochlear synaptopathy is not fully understood. This study tests the hypothesis that cisplatin treatment alters the abundance of cochlear synaptosomal proteins, and selective targeting of nitrative stress prevents the associated synaptic dysfunction.

View Article and Find Full Text PDF

Environmental exposure to heavy metal lead, a public health hazard in many post-industrial cities, causes hearing impairment upon long-term exposure. Lead-induced cochlear and vestibular dysfunction is well-documented in animal models. Although short-term exposure to lead at concentrations relevant to environmental settings does not cause significant shifts in hearing thresholds in adults, moderate- to low-level lead exposures induce neuronal damage and synaptic dysfunction.

View Article and Find Full Text PDF

Nitrative stress is increasingly recognized as a critical mediator of apoptotic cell death in many pathological conditions. The accumulation of nitric oxide along with superoxide radicals leads to the generation of peroxynitrite that can eventually result in the nitration of susceptible proteins. Nitrotyrosine is widely used as a biomarker of nitrative stress and indicates oxidative damage to proteins.

View Article and Find Full Text PDF

Cisplatin, a potent chemotherapeutic drug, induces ototoxicity, which limits its clinical utility. Cisplatin-induced oxidative stress plays a causal role in cochlear apoptosis while the consequent nitrative stress leads to the nitration of LIM domain only 4 (LMO4), a transcriptional regulator, and decreases its cochlear expression levels. Here, we show a direct link between cochlear LMO4 and cisplatin-induced hearing loss by employing a Lmo4 conditional knockout mouse model (Lmo4; Gfi1).

View Article and Find Full Text PDF

Generation of reactive oxygen species, a critical factor in cisplatin-induced ototoxicity, leads to the formation of peroxynitrite, which in turn results in the nitration of susceptible proteins. Previous studies indicated that LMO4, a transcriptional regulator, is the most abundantly nitrated cochlear protein after cisplatin treatment and that LMO4 nitration facilitates ototoxicity in rodents. However, the role of this mechanism in regulating cisplatin-induced hair cell loss in non-mammalian models is unknown.

View Article and Find Full Text PDF

Pollutants that contaminate the natural or built environment adversely affect the health of living organisms. Although exposure to many of them could be avoided or minimized by careful preventive measures, it is impossible to totally avoid exposure to all pollutants. Ototraumatic agents, such as noise, chemicals, and heavy metals, are pervasive pollutants, mostly produced by human activity, and are critical factors in inducing acquired hearing loss.

View Article and Find Full Text PDF

Firefighters are susceptible to auditory dysfunction due to long-term exposure to noise from sirens, air horns, equipment, and tools used in forcible entry, ventilation, and extrication. In addition, they are exposed to ototoxic chemicals, particularly, during overhaul operations. Studies indicate that 40% of firefighters have hearing loss in the noise-sensitive frequencies of 4 and 6 kHz.

View Article and Find Full Text PDF

JAK/STAT pathway is one among the several oxidative stress-responsive signaling pathways that play a critical role in facilitating cisplatin-induced ototoxicity. Cisplatin treatment decreases the levels of cochlear LMO4, which acts as a scaffold for IL6-GP130 protein complex. Cisplatin-induced nitration and degradation of LMO4 could destabilize this protein complex, which in turn could compromise the downstream STAT3-mediated cellular defense mechanism.

View Article and Find Full Text PDF

Acquired hearing loss is caused by complex interactions of multiple environmental risk factors, such as elevated levels of lead and noise, which are prevalent in urban communities. This study delineates the mechanism underlying lead-induced auditory dysfunction and its potential interaction with noise exposure. Young-adult C57BL/6 mice were exposed to: 1) control conditions; 2) 2 mM lead acetate in drinking water for 28 days; 3) 90 dB broadband noise 2 h/day for two weeks; and 4) both lead and noise.

View Article and Find Full Text PDF

Lim-domain only 4 (LMO4) plays a critical role in mediating the ototoxic side-effects of cisplatin, a highly effective anti-cancer drug. However, the signaling mechanism by which cochlear LMO4 mediates otopathology is yet to be fully understood. Knockout cell culture models are useful tools for investigating the functional roles of novel genes and delineating associated signaling pathways.

View Article and Find Full Text PDF

Cisplatin-induced ototoxicity remains a primary dose-limiting adverse effect of this highly effective anticancer drug. The clinical utility of cisplatin could be enhanced if the signaling pathways that regulate the toxic side-effects are delineated. In previous studies, we reported cisplatin-induced nitration of cochlear proteins and provided the first evidence for nitration and downregulation of cochlear LIM domain only 4 (LMO4) in cisplatin ototoxicity.

View Article and Find Full Text PDF

Cytotoxic effects of cisplatin occur primarily through apoptosis. Though several pro- and anti-apoptotic signaling molecules have been identified to play an important role in mediating the ototoxic, nephrotoxic, and neurotoxic side-effects of cisplatin, the underlying mechanism is yet to be fully characterized. We reported that nitration of LIM domain only 4 (LMO4), a transcriptional regulator, facilitates cochlear apoptosis in cisplatin-induced ototoxicity.

View Article and Find Full Text PDF

Membrane transporters can be major determinants in the targeting and effectiveness of pharmaceutical agents. A large number of biologically important membrane transporters have been identified and localized to a variety of tissues, organs and cell types. However, little is known about the expression of key membrane transporters in the inner ear, a promising site for targeted therapeutics, as well as a region vulnerable to adverse drug reactions and environmental factors.

View Article and Find Full Text PDF

Lmo4, a transcriptional regulator, appears to be a key player in mediating the cochlear pathology in cisplatin ototoxicity, as it controls cellular responses by modulating the formation of transcriptional complexes. We provided the first evidence of in vivo nitration of Lmo4 in cisplatin ototoxicity. Our data suggested that nitration of Lmo4 and associated decrease in its cochlear expression has the potential to play a pivotal role in cisplatin ototoxicity.

View Article and Find Full Text PDF

Noise-induced hearing loss (NIHL) is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL.

View Article and Find Full Text PDF

The hippocampus, which is critical for memory and spatial navigation, contains a proliferating stem cell niche that is especially vulnerable to antineoplastic drugs such as cisplatin. Although the damaging effects of cisplatin have recently been recognized, the molecular mechanisms underlying its toxic effects on this vital region are largely unknown. Using a focused apoptosis gene array, we analyzed the early cisplatin-induced changes in gene expression in the hippocampus of adult Sprague-Dawley rats and compared the results to those from the inferior colliculus, a non-mitotic auditory region resistant to cisplatin-induced cell death.

View Article and Find Full Text PDF

S-nitrosylation is a redox-sensitive protein modification, which is a highly specific, but reversible mechanism that regulates several signal transduction cascades. Oxidative stress plays a causal role in the ototoxic effects of an anti-neoplastic drug, cisplatin. Despite emerging evidence implicating nitroxidative stress as a critical factor in cisplatin toxicity, the significance of the cochlear protein S-nitrosylation in cisplatin ototoxicity is yet to be understood.

View Article and Find Full Text PDF

Tyrosine nitration is an important sequel of cellular signaling induced by reactive oxygen species. Cisplatin is an anti-neoplastic agent that damages the inner ear through reactive oxygen species and by the formation of DNA adducts. This study reveals a correlation between cisplatin-mediated hearing loss and nitroxidative modification of cochlear proteins and is the first to report nitration of Lmo4.

View Article and Find Full Text PDF

Noise exposure is a major cause of hearing loss. Classical methods of studying protein involvement have provided a basis for understanding signaling pathways that mediate hearing loss and damage repair but do not lend themselves to studying large networks of proteins that are likely to increase or decrease during noise trauma. To address this issue, antibody microarrays were used to quantify the very early changes in protein expression in three distinct regions of the chinchilla cochlea 2h after exposure to a 0.

View Article and Find Full Text PDF
Article Synopsis
  • Oxidative stress contributes to aging and noise-induced damage in the cochlea, prompting a study on enzyme activity related to hydrogen peroxide removal in different aged rats.
  • Significant increases in glutathione peroxidase (Gpx) activity were observed in vascular tissues, indicating an age-related response, while catalase activity showed elevation mainly in vestibular tissue.
  • The results imply that higher Gpx activity in cochlear vascular tissues may compensate for lowered glutathione levels and a deteriorating redox state as the rats age.
View Article and Find Full Text PDF

Previous studies reported that exposure to non-traumatic level sounds after traumatic noise exposure reduced the degree of noise-induced hearing loss and hair cell stereocilia damage. The current study investigated the effects of a 3-day post-noise acoustic environment on the degree of noise-induced hearing loss and cochlear damage. Female chinchillas were exposed to traumatic continuous noise (4 kHz octave-band noise) at 107 dB SPL for 1h and then placed in either an augmented acoustic environment (AAE) or deprived acoustic environment (DAE) for 3 days.

View Article and Find Full Text PDF

Differences in the expression of cochlear proteins are likely to affect the susceptibility of different animal models to specific types of auditory pathology. However, little is currently known about proteins that are abundantly expressed in inner ear. Identification of these proteins may facilitate the search for biomarkers of susceptibility and intervention targets.

View Article and Find Full Text PDF

The advent of contemporary proteomic technologies has ushered in definite advances to the field of auditory research and has provided the potential for a dramatic increase in applications in the near future. Two dimensional-differential gel electrophoresis (2D-DIGE) followed by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), antibody microarrays and tandem mass spectrometry have evolved as the major tools. Each of these techniques has unique features with distinct advantages.

View Article and Find Full Text PDF
Article Synopsis
  • Cisplatin, a common cancer treatment, primarily harms outer hair cells in the inner ear, leading to early changes in protein expression before noticeable hearing loss occurs.
  • The study used an antibody microarray to identify 19 proteins related to cell survival and apoptosis that were significantly altered after cisplatin treatment, with many being newly recognized in inner ear research.
  • Despite minimal initial hearing threshold changes and minor receptor cell loss, the alterations in protein expression indicate early stages of ototoxic effects and cellular responses in the cochlea.
View Article and Find Full Text PDF