Publications by authors named "Samrot A"

Over recent decades, advancements in omics technologies, such as proteomics, genomics, epigenomics, metabolomics, transcriptomics, and microbiomics, have significantly enhanced our understanding of the molecular mechanisms underlying various physiological and pathological processes. Nonetheless, the analysis and interpretation of vast omics data concerning reproductive diseases are complicated by the cyclic regulation of hormones and multiple other factors, which, in conjunction with a genetic makeup of an individual, lead to diverse biological responses. Reproductomics investigates the interplay between a hormonal regulation of an individual, environmental factors, genetic predisposition (DNA composition and epigenome), health effects, and resulting biological outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Leukemia is a type of cancer that affects the bone marrow and is categorized as either acute or chronic, depending on how quickly it spreads, and as myelocytic or lymphocytic based on the type of white blood cells involved.
  • The study investigated the effects of the Newcastle Disease Virus (NDV) strain AF2240 on WEHI 3B leukemia cells using advanced microscopy techniques to observe cell changes and apoptosis (programmed cell death).
  • Results showed that NDV caused significant changes in cell structure and decreased cell viability, with signs of early apoptosis detected within six hours of treatment, indicating potential for NDV in developing new leukemia therapies.
View Article and Find Full Text PDF

Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis.

View Article and Find Full Text PDF

Biological macromolecules like polysaccharides/proteins/glycoproteins have been widely used in the field of tissue engineering due to their ability to mimic the extracellular matrix of tissue. In addition to this, these macromolecules are found to have higher biocompatibility and no/lesser toxicity when compared to synthetic polymers. In recent years, scaffolds made up of proteins, polysaccharides, or glycoproteins have been highly used due to their tensile strength, biodegradability, and flexibility.

View Article and Find Full Text PDF

Nanotechnology is used in a variety of scientific, medical, and research domains. It is significant to mention that there are negative and severe repercussions of nanotechnology on both individuals and the environment. The toxic effect of nanoparticles exerted on living beings is termed as nanotoxicity.

View Article and Find Full Text PDF

Wound healing is a programmed process of continuous events which is impaired in the case of diabetic patients. This impaired process of healing in diabetics leads to amputation, longer hospitalisation, immobilisation, low self-esteem, and mortality in some patients. This problem has paved the way for several innovative strategies like the use of nanotechnology for the treatment of wounds in diabetic patients.

View Article and Find Full Text PDF

Metal nanoparticles, such as gold nanoparticles, silver nanoparticles, etc., have many benefits and have been in use for a very long time. Nevertheless, a number of concerns have been raised about the environmental impact and the possibility of exposure to various living systems at the moment.

View Article and Find Full Text PDF

Nanoparticles are potential candidates for wastewater treatment especially for the removal of heavy metals due to their strong affinity. Many biopolymers are used as adsorbents and encapsulation of nanoparticle onto them can increase their efficiency. In this study, SPIONs, alginate, and SPIONs incorporated on alginate beads have been synthesized and characterized both microscopically and spectroscopically.

View Article and Find Full Text PDF

Plant gums are bio-organic substances that are derived from the barks of trees. They are biodegradable and non-adverse complex polysaccharides that have been gaining usage in recent years due to a number of advantages they contribute to various applications. In this study, gum was collected from and trees, then dried and powdered.

View Article and Find Full Text PDF

In December 2019, an unknown viral infection emerged and quickly spread worldwide, resulting in a global pandemic. This novel virus caused severe pneumonia and acute respiratory distress syndrome caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). It has caused 6.

View Article and Find Full Text PDF

Latex, a milky substance found in a variety of plants which is a natural source of biologically active compounds. In this study, Latex was collected from raw Carica papaya and was characterized using UV-Vis, FTIR and GC-MS analyses. Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized, coated with C.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) are storage granules found in bacteria that are essentially hydroxy fatty acid polyesters. PHA molecules appear in variety of structures, and amongst all types of PHAs, polyhydroxybutyrate (PHB) is used in versatile fields as it is a biodegradable, biocompatible, and ecologically safe thermoplastic. The unique physicochemical characteristics of these PHAs have made them applicable in nanotechnology, tissue engineering, and other biomedical applications.

View Article and Find Full Text PDF

Bone fractures have a high degree of severity. This is usually a result of the physical trauma of diseases that affect bone tissues, such as osteoporosis. Due to its highly vascular nature, the bone is in a constant state of remodeling.

View Article and Find Full Text PDF

Biofilms comprising aggregates of microorganisms or multicellular communities have been a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous biofilm-forming microorganisms have been identified, which have been shown to result in major effects including biofouling and biofilm-related infections. Quorum sensing (which describes the cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its virulence.

View Article and Find Full Text PDF

: Matrix metalloproteinases (MMP) have been implicated as major determinants of tumour growth and metastasis, which are considered two of the main hallmarks of cancer. The interaction of and other signalling molecules within and adjacent tumoral tissues, including immune cells, are rather elusive, particularly of adenocarcinoma cell type. In this study, we aimed to investigate the role of in non-small cell lung cancer proliferation and invasiveness potential.

View Article and Find Full Text PDF

Extensive clinical efforts have been made to control the severity of dengue diseases; however, the dengue morbidity and mortality have not declined. Dengue virus (DENV) can infect and cause systemic damage in many organs, resulting in organ failure. Here, we present a novel report showing a tailored stem-cell-based therapy that can aid in viral clearance and rescue liver cells from further damage during dengue infection.

View Article and Find Full Text PDF

The recent outbreak of COVID-19 is attributed to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This viral disease is rapidly spreading across the globe, including India. The mainstay in managing the disease is supportive care, nutrition, and preventing further progression in the absence of proven antiviral drugs.

View Article and Find Full Text PDF

Osteoblasts play an important role in bone regeneration and repair. The hypoxia condition in bone occurs when bone undergoes fracture, and this will trigger a series of biochemical and mechanical changes to enable bone repair. Hence, it is interesting to observe the metabolites and metabolism changes when osteoblasts are exposed to hypoxic condition.

View Article and Find Full Text PDF

Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria.

View Article and Find Full Text PDF

Avascular necrosis (AVN) of the bones remains a major clinical challenge. Fractures in the talus, the scaphoid, and the neck of the femur are especially challenging to heal due to the low blood vessel network and the lack of collateral blood supply. These fractures are associated with high rates of nonunion and increased infections that require repeated operations.

View Article and Find Full Text PDF

Chitosan, collagen, gelatin, polylactic acid and polyhydroxyalkanoates are notable examples of biopolymers, which are essentially bio-derived polymers produced by living cells. With the right techniques, these biological macromolecules can be exploited for nanotechnological advents, including for the fabrication of nanocarriers. In the world of nanotechnology, it is highly essential (and optimal) for nanocarriers to be biocompatible, biodegradable and non-toxic for safe in vivo applications, including for drug delivery, cancer immunotherapy, tissue engineering, gene delivery, photodynamic therapy and many more.

View Article and Find Full Text PDF

Background: Plant gums consist of polysaccharides which can be used in the preparation of nanocarriers and provide a wide application in pharmaceutical applications including as drug delivery agents and the matrices for drug release. The objectives of the study were to collect plant gums from L and L and to extract and characterize their polysaccharides. Then to utilize these plant gum-derived polysaccharides for the formulation of nanocarriers to use for drug loading and to examine their purpose in drug delivery in vitro.

View Article and Find Full Text PDF

In recent days, there is an increasing use of green composites in composite manufacturing, where cellulosic natural fibers have been started using for this purpose. In line with this, a novel cellulose fiber was extracted from the Kigelia africana fruit and its physical, chemical and thermal properties, crystallography and surface morphology analysis were studied and reported in this investigative research paper. The physical analysis revealed the mean tensile strength as 50.

View Article and Find Full Text PDF
Article Synopsis
  • Blindness and vision impairment result from irreversible retinal degeneration, with cell therapy offering a potential solution to restore vision by replacing lost photoreceptors.
  • Stem cell therapy, particularly involving photoreceptor and retinal pigment epithelium transplantation, faces challenges such as limited protocols, insufficient cell quantities, and the need for selection of appropriate stem cell sources.
  • Dental pulp stem cells (DPSC) are being explored for their ability to differentiate into neuronal cells, highlighting their promising role in treating retinal degeneration.
View Article and Find Full Text PDF