Plants maintain iron (Fe) homeostasis under varying environmental conditions by balancing processes such as Fe uptake, transport and storage. In Arabidopsis, POPEYE (PYE), a basic helix-loop-helix transcription factor (TF), has been shown to play a crucial role in regulating this balance. In recent years, the mechanisms regulating Fe uptake have been well established but the upstream transcriptional regulators of Fe transport and storage are still poorly understood.
View Article and Find Full Text PDFIn the dynamic environment of plants, the interplay between light-dependent growth and iron nutrition is a recurring challenge. Plants respond to low iron levels by adjusting growth and physiology through enhanced iron acquisition from the rhizosphere and internal iron pool reallocation. Iron deficiency response assays and gene co-expression networks aid in documenting physiological reactions and unraveling gene regulatory cascades, offering insight into the interplay between hormonal and external signaling pathways.
View Article and Find Full Text PDFELONGATED HYPOCOTYL 5 (HY5), a bZIP-type transcription factor, is a master regulator of light-mediated responses. ELONGATED HYPOCOTYL 5 binds to the promoter of c. 3000 genes, thereby regulating various physiological and biological processes, including photomorphogenesis, flavonoid biosynthesis, root development, response to abiotic stress and nutrient homeostasis.
View Article and Find Full Text PDFIron (Fe) is an essential micronutrient for both plants and animals. Fe-limitation significantly reduces crop yield and adversely impacts on human nutrition. Owing to limited bioavailability of Fe in soil, plants have adapted different strategies that not only regulate Fe-uptake and homeostasis but also bring modifications in root system architecture to enhance survival.
View Article and Find Full Text PDF