Publications by authors named "Samreen Jatana"

Obesity is a growing concern in the US and world-wide, associated with an increased risk for several cardiometabolic diseases, including metabolic associated steatotic liver disease (MASLD). Currently, therapeutic interventions to prevent and/or treat MASLD are limited, and research is needed to identify new therapeutic targets. The specific-sized 35kDa fragment of hyaluronan (HA35), has gut protective and anti-inflammatory properties and a previous pilot clinical study reported it is well tolerated in healthy individuals.

View Article and Find Full Text PDF

Background: Metabolic syndrome and diabetes in obese individuals are strong risk factors for development of inflammatory bowel disease (IBD) and colorectal cancer. The pathogenic mechanisms of low-grade metabolic inflammation, including chronic hyperglycemic stress, in disrupting gut homeostasis are poorly understood. In this study, we sought to understand the impact of a hyperglycemic environment on intestinal barrier integrity and the protective effects of small molecular weight (35 kDa) hyaluronan on epithelial barrier function.

View Article and Find Full Text PDF

Pyoderma gangrenosum (PG) is a debilitating skin condition often accompanied by inflammatory bowel disease (IBD). Strikingly, ~40% of patients that present with PG have underlying IBD, suggesting shared but unknown mechanisms of pathogenesis. Impeding the development of effective treatments for PG is the absence of an animal model that exhibits features of both skin and gut manifestations.

View Article and Find Full Text PDF
Article Synopsis
  • Hospitalized patients with SARS-CoV-2 infection are more likely to develop hospital-acquired sacral pressure injuries (HASPI), with a 63% higher incidence rate compared to non-infected patients.
  • COVID-19(+) patients experience more severe HASPIs, requiring more aggressive treatments like debridement, and have a worse overall hospitalization course.
  • Histological examinations of HASPIs in COVID-19(+) patients show significant evidence of thrombotic vasculopathy and an immune response indicating that COVID-19 may disrupt normal skin healing processes, contributing to pressure injuries.
View Article and Find Full Text PDF

Severe burns are traumatic and physically debilitating injuries with a high rate of mortality. Bacterial infections often complicate burn injuries, which presents unique challenges for wound management and improved patient outcomes. Currently, pigs are used as the gold standard of pre-clinical models to study infected skin wounds due to the similarity between porcine and human skin in terms of structure and immunological response.

View Article and Find Full Text PDF

Thread size and polymer composition are critical properties to consider for achieving a positive healing outcome with a wound dressing. Three-dimensional (3D) printed scaffolds and electrospun mats both offer distinct advantages as replaceable wound dressings. This research aims to determine if the thread size and polymer compositions of the scaffolds affect skin wound healing outcomes, an aspect that has not been adequately explored.

View Article and Find Full Text PDF

Amorphous silicon dioxide nanoparticles (SiNPs) are ubiquitous, and they are currently found in cosmetics, drugs, and foods. Biomedical research is also focused on using these nanoparticles as drug delivery and bio-sensing platforms. Due to the high potential for skin exposure to SiNPs, research into the effect of topical exposure on both healthy and inflammatory skin models is warranted.

View Article and Find Full Text PDF
Article Synopsis
  • - Multidrug-resistant bacteria pose a significant safety risk in healthcare, making it urgent to discover new treatments to fight these infections.
  • - The study shows that the compound N-phosphonacetyl-L-aspartate (PALA) can improve the ability of human skin cells to clear resistant bacterial strains like MRSA and Pseudomonas aeruginosa by boosting the release of antimicrobial peptides, rather than killing the bacteria directly.
  • - Testing on skin models indicated that a topical formulation of PALA effectively increases the clearance of these bacteria and stimulates the production of key antimicrobial peptides, suggesting that PALA could be a promising alternative therapy in treating resistant skin infections.
View Article and Find Full Text PDF

In recent years there has been considerable effort to understand the interaction of nanomaterials with the skin. In this study we use an in vivo mouse model of allergic contact dermatitis to investigate how nanoparticles (NPs) may alter allergic responses in skin. We investigate a variety of NPs that vary in size, charge and composition.

View Article and Find Full Text PDF

Background: Previous work has demonstrated size, surface charge and skin barrier dependent penetration of nanoparticles into the viable layers of mouse skin. The goal of this work was to characterize the tissue distribution and mechanism of transport of nanoparticles beyond skin, with and without Ultraviolet Radiation (UVR) induced skin barrier disruption. Atomic absorption spectroscopy (AAS), flow cytometry and confocal microscopy were used to examine the effect of UVR dose (180 and 360 mJ/cm UVB) on the skin penetration and systemic distribution of quantum dot (QD) nanoparticles topically applied at different time-points post UVR using a hairless C57BL/6 mouse model.

View Article and Find Full Text PDF

Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD) NPs between freshly excised human and mouse skin.

View Article and Find Full Text PDF

The study of engineered nanomaterials for the development of technological applications, nanomedicine, and nano-enabled consumer products is an ever-expanding discipline as is the concern over the impact of nanotechnology on human environmental health and safety. In this review, we discuss the current state of understanding of nanomaterial skin interactions with a specific emphasis on the effects of ultraviolet radiation (UVR) skin exposure. Skin is the largest organ of the body and is typically exposed to UVR on a daily basis.

View Article and Find Full Text PDF

Ultraviolet radiation (UVR) skin exposure is a common exogenous insult that can alter skin barrier and immune functions. With the growing presence of nanoparticles (NPs) in consumer goods and technological applications the potential for NPs to contact UVR-exposed skin is increasing. Therefore it is important to understand the effect of UVR on NP skin penetration and the potential for systemic translocation.

View Article and Find Full Text PDF