CYP5122A1, an enzyme involved in sterol biosynthesis in Leishmania, was recently characterized as a sterol C4-methyl oxidase. Screening of a library of compounds against CYP5122A1 and CYP51 from Leishmania resulted in the identification of two structurally related classes of inhibitors of these enzymes. Analogs of screening hit N-(3,5-dimethylphenyl)-4-(pyridin-4-ylmethyl)piperazine-1-carboxamide (4a) were generally strong inhibitors of CYP51 but were less potent against CYP5122A1 and typically displayed weak inhibition of L.
View Article and Find Full Text PDFThe accessibility of sterols in mammalian cells to exogenous sterol-binding agents has been well-described previously, but sterol accessibility in distantly related protozoa is unclear. The human pathogen Leishmania major uses sterols and sphingolipids distinct from those used in mammals. Sterols in mammalian cells can be sheltered from sterol-binding agents by membrane components, including sphingolipids, but the surface exposure of ergosterol in Leishmania remains unknown.
View Article and Find Full Text PDFUnderstanding the function and mechanism of pore-forming toxins (PFTs) is challenging because cells resist the membrane damage caused by PFTs. While biophysical approaches help understand pore formation, they often rely on reductionist approaches lacking the full complement of membrane lipids and proteins. Cultured human cells provide an alternative system, but their complexity and redundancies in repair mechanisms make identifying specific mechanisms difficult.
View Article and Find Full Text PDFSphingosine-1-phosphate phosphatase (SPP) catalyzes the dephosphorylation of sphingosine-1-phosphate (S1P) into sphingosine, the reverse reaction of sphingosine kinase. In mammals, S1P acts as a potent bioactive molecule regulating cell proliferation, migration, and immunity. In Leishmania, S1P production is crucial for the synthesis of ethanolamine and choline phospholipids, and cell survival under stress conditions.
View Article and Find Full Text PDFparasites are trypanosomatid protozoans that cause leishmaniasis affecting millions of people worldwide. Sterols are important components of the plasma and organellar membranes. They also serve as precursors for the synthesis of signaling molecules.
View Article and Find Full Text PDFFront Cell Infect Microbiol
July 2021
Phosphatidylcholine (PC) is the most abundant type of phospholipids in eukaryotes constituting ~30% of total lipids in . PC synthesis mainly occurs the choline branch of the Kennedy pathway (choline ⇒ choline-phosphate ⇒ CDP-choline ⇒ PC) and the N-methylation of phosphatidylethanolamine (PE). In addition, parasites can acquire PC and other lipids from the host or culture medium.
View Article and Find Full Text PDFSterol 14-α-demethylase (C14DM) is a key enzyme in the biosynthesis of sterols and the primary target of azoles. In Leishmania major, genetic or chemical inactivation of C14DM leads to accumulation of 14-methylated sterol intermediates and profound plasma membrane abnormalities including increased fluidity and failure to maintain ordered membrane microdomains. These defects likely contribute to the hypersensitivity to heat and severely reduced virulence displayed by the C14DM-null mutants (c14dm‾).
View Article and Find Full Text PDFPhosphatidylcholine (PC) is a major cell membrane constituent and precursor of important second messengers. In Leishmania parasites, PC synthesis can occur via the choline branch of the Kennedy pathway, the N-methylation of phosphatidylethanolamine (PE), or the remodeling of exogenous phospholipids. To investigate the role of de novo PC synthesis in Leishmania major, we focused on the cholinephosphate cytidylyltransferase (CPCT) which catalyzes the formation of CDP-choline, a key intermediate in the choline branch of the Kennedy pathway.
View Article and Find Full Text PDFEthanolamine glycerophospholipids are ubiquitous cell membrane components. Trypanosomatid parasites of the genus Leishmania synthesize the majority of their ethanolamine glycerophospholipids as 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine or plasmenylethanolamine (PME) through the Kennedy pathway. PME is a subtype of ether phospholipids also known as ethanolamine plasmalogen whose functions are not well characterized.
View Article and Find Full Text PDF