Publications by authors named "Samrat Kundu"

The development of highly reducing photocatalysts to functionalize arenes the generation of reactive aryl radicals under mild and environmentally benign reaction conditions has emerged as a noteworthy approach in the realm of organic synthesis. Herein, we report a readily synthesized series of novel naphthocarbazole derivatives (NCs) as organo-photocatalysts, which, upon irradiation under 390 nm light, acquire high reducing power to catalyze several reductive transformations. The promising properties revealed by in depth photophysical and electrochemical studies ( = -1.

View Article and Find Full Text PDF

A new series of carbazole-cored biomimetic -quinone catalysts structurally resembling carbazoquinocin alkaloids have been introduced to promote tunable, metal cocatalyst-free, organocatalytic, dehydrogenative amine oxidation under aerobic conditions. Differently substituted benzyl amines were tolerated under optimized conditions to provide imines in excellent yields. Further efficacy of the catalyst was demonstrated by synthesizing cross-coupled imines efficiently.

View Article and Find Full Text PDF

Herein, BPC catalyzed visible-light-triggered target-specific late-stage solution phase desulfonylation from tryptophan in oligopeptides is portrayed by overcoming the isolation issue up to octamers. This robust and mild method is highly predictable and chemoselective, tolerating myriad of functional groups in aza-heteroaromatics and peptides. Interestingly, reductive desulfonylation is also amenable to biologically significant reactive histidine and tyrosine side chains, signifying the versatility of the strategy.

View Article and Find Full Text PDF

A masked-bay-region selective first-row transition-metal Cp*Co(III)-catalyzed annulative π-extension of arene-derived ketones is achieved to afford K-region-functionalized benzo[]pyrenes, benzotetraphenes, and pyrenes. Comprehensive density functional theory studies buttress the mechanistic pathway comprising key steps like -C-H activation, alkyne 1,2-migratory insertion, and nucleophilic attack toward ketone, this attack being the rate-determining step. In addition, π-conjugated 1,1'-bipyrenes, potential photocatalyst pyrene-quinones, and putative n-type semiconductor cyano group-containing dibenzo[,]tetracenes are also accessed.

View Article and Find Full Text PDF

KRAS/ERK pathway phosphorylates DICER1, causing its nuclear translocation, and phosphomimetic contributes to tumorigenesis in mice. Mechanisms through which phospho-DICER1 regulates tumor progression remain undefined. While DICER1 canonically regulates microRNAs (miRNA) and epithelial-to-mesenchymal transition (EMT), we found that phosphorylated nuclear DICER1 (phospho-nuclear DICER1) promotes late-stage tumor progression in mice with oncogenic , independent of miRNAs and EMT.

View Article and Find Full Text PDF

Unlabelled: Epithelial-to-mesenchymal transition results in loss of specialized epithelial cell contacts and acquisition of mesenchymal invasive capacity. The transcription repressor zinc finger E-box-binding homeobox 1 (ZEB1) binds to E-boxes of gene promoter regions to suppress the expression of epithelial genes. ZEB1 has inconsistent molecular weights, which have been attributed to posttranslational modifications (PTM).

View Article and Find Full Text PDF

Benzoperylenocarbazole (BPC), a unique carbazole-based organophotocatalyst, is reported herein as a potent organo-photoreductant. Lower excited state oxidation potential (-2.0 V vs SCE) and reasonable excited state lifetime (4.

View Article and Find Full Text PDF

Lung cancer is a highly aggressive and metastatic disease responsible for approximately 25% of all cancer-related deaths in the United States. Using high-throughput in vitro and in vivo screens, we have previously established Impad1 as a driver of lung cancer invasion and metastasis. Here we elucidate that Impad1 is a direct target of the epithelial microRNAs (miRNAs) miR-200 and miR∼96 and is de-repressed during epithelial-to-mesenchymal transition (EMT); thus, we establish a mode of regulation of the protein.

View Article and Find Full Text PDF

One of the mechanisms by which cancer cells acquire hyperinvasive and migratory properties with progressive loss of epithelial markers is the epithelial-to-mesenchymal transition (EMT). We have previously reported that in different cancer types, including nonsmall cell lung cancer (NSCLC), the microRNA-183/96/182 cluster (m96cl) is highly repressed in cells that have undergone EMT. In the present study, we used a novel conditional m96cl mouse to establish that loss of m96cl accelerated the growth of Kras mutant autochthonous lung adenocarcinomas.

View Article and Find Full Text PDF

Indoles are one of the most prominent aromatic heterocycles in the organic chemistry field. Due to their widespread presence in various natural products, alkaloids, drugs, approved medicines, . the synthesis and functionalization of indoles are of great interest.

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters host cells through the cell surface proteins ACE2 and TMPRSS2.

Methods: Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2.

Results: We find that ACE2 expression is restricted to a select population of epithelial cells.

View Article and Find Full Text PDF

A Brønsted acid catalyzed cascade benzannulation strategy for the one-pot synthesis of densely populated poly-aryl benzo[a]carbazole architectures is disclosed from easily affordable fundamental commodities. The efficacy of this technique was further validated via the concise synthesis of structurally unique carbazole based poly-aromatic hydrocarbons. Furthermore, the photo-physical properties of the synthesized compounds are thoroughly investigated.

View Article and Find Full Text PDF

Metastasis is the cause for 90% of cancer-related mortalities. Identification of genetic drivers promoting dissemination of tumor cells may provide opportunities for novel therapeutic strategies. We previously reported an in vivo gain-of-function screen that identified ~30 genes with a functional role in metastasis promotion and characterized detailed mechanistic functions of two hits.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide, due in part to its proclivity to metastasize. Identifying novel drivers of invasion and metastasis holds therapeutic potential for the disease. We conducted a gain-of-function invasion screen, which identified two separate hits, IMPAD1 and KDELR2, as robust, independent drivers of lung cancer invasion and metastasis.

View Article and Find Full Text PDF

COVID-19 is an infectious disease caused by SARS-CoV-2, which enters host cells via the cell surface proteins ACE2 and TMPRSS2. Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of and . We find that expression is restricted to a select population of highly epithelial cells.

View Article and Find Full Text PDF

A Brønsted acid-catalyzed pinacol-type rearrangement pathway is reported here to synthesize various substituted α-(3-indolyl) ketones by employing unprotected indoles and α-hydroxy aldehydes as coupling partners. Utilization of economic and readily available Brønsted acid catalyst and use of simple starting precursors exemplify the economic viability of this method. Under this developed protocol, selective migration of aryl over alkyl or a second aryl group is observed depending upon the migratory aptitude of the substituents.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, due in part to the propensity of lung cancer to metastasize. Aberrant epithelial-to-mesenchymal transition (EMT) is a proposed model for the initiation of metastasis. During EMT cell-cell adhesion is reduced allowing cells to dissociate and invade.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors have failed to show clinical benefit in Kirsten rat sarcoma () mutant lung cancer due to various resistance mechanisms. To identify differential therapeutic sensitivities between epithelial and mesenchymal lung tumors, we performed in vivo small hairpin RNA screens, proteomic profiling, and analysis of patient tumor datasets, which revealed an inverse correlation between mitogen-activated protein kinase (MAPK) signaling dependency and a zinc finger E-box binding homeobox 1 (ZEB1)-regulated epithelial-to-mesenchymal transition. Mechanistic studies determined that MAPK signaling dependency in epithelial lung cancer cells is due to the scaffold protein interleukin-17 receptor D (IL17RD), which is directly repressed by ZEB1.

View Article and Find Full Text PDF

Metastatic lung cancer is the leading cause of cancer-associated mortality worldwide, therefore necessitating novel approaches to identify specific genetic drivers for lung cancer progression and metastasis. We recently performed an in vivo gain-of-function genetic screen to identify driver genes of lung cancer metastasis. In the study reported here, we identify TMEM106B as a primary robust driver of lung cancer metastasis.

View Article and Find Full Text PDF

Genetic aberrations driving pro-oncogenic and pro-metastatic activity remain an elusive target in the quest of precision oncology. To identify such drivers, we use an animal model of KRAS-mutant lung adenocarcinoma to perform an in vivo functional screen of 217 genetic aberrations selected from lung cancer genomics datasets. We identify 28 genes whose expression promoted tumor metastasis to the lung in mice.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is one of the most aggressive forms of cancer, with a 5-year survival <7%. A major barrier to progress is the absence of predictive biomarkers for chemotherapy and novel targeted agents such as PARP inhibitors. Using a high-throughput, integrated proteomic, transcriptomic, and genomic analysis of SCLC patient-derived xenografts (PDXs) and profiled cell lines, we identified biomarkers of drug sensitivity and determined their prevalence in patient tumors.

View Article and Find Full Text PDF

The desmosome anchors keratin filaments in epithelial cells leading to the formation of a tissue wide IF network. Loss of the desmosomal plaque protein plakophilin3 (PKP3) in HCT116 cells, leads to an increase in neoplastic progression and metastasis, which was accompanied by an increase in K8 levels. The increase in levels was due to an increase in the protein levels of the Phosphatase of Regenerating Liver 3 (PRL3), which results in a decrease in phosphorylation on K8.

View Article and Find Full Text PDF

The KRAS-variant is a germline single nucleotide polymorphism (SNP) within the 3'UTR of the KRAS gene predicted to disrupt a complementary binding site (LCS6) for the let-7 microRNA (miRNA). The KRAS-variant is associated with increased risk of various cancers, including lung cancer, ovarian cancer and triple-negative breast cancer, and is associated with altered tumor biology in head and neck cancer, colon cancer and melanoma. To better understand the molecular pathways that may be regulated or affected by the presence of the KRAS-variant allele in cancer cells, we examined its prevalence in the NCI-60 panel of cell lines and sought to identify common features of the cell lines that carry the variant allele.

View Article and Find Full Text PDF

Keratins are cytoplasmic intermediate filament proteins preferentially expressed by epithelial tissues in a site-specific and differentiation-dependent manner. The complex network of keratin filaments in stratified epithelia is tightly regulated during squamous cell differentiation. Keratin 14 (K14) is expressed in mitotically active basal layer cells, along with its partner keratin 5 (K5), and their expression is down-regulated as cells differentiate.

View Article and Find Full Text PDF