J Neurosurg
September 2024
Multi-radionuclide in vivo imaging with submillimetre resolution can be a potent tool for biomedical research. While high-resolution radionuclide imaging faces challenges in sensitivity, multi-radionuclide imaging encounters difficulty due to radiation contamination, stemming from crosstalk between radionuclides and Compton scattering. Addressing these challenges simultaneously is imperative for multi-radionuclide high-resolution imaging.
View Article and Find Full Text PDFGlioblastoma is characterized by diffuse infiltration into the normal brain. Invasive glioma stem cells (GSCs) are an underlying cause of treatment failure. Despite the use of multimodal therapies, the prognosis remains dismal.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) is a high-LET particle radiotherapy clinically tested for treating malignant gliomas. Boronophenylalanine (BPA), a boron-containing phenylalanine derivative, is selectively transported into tumor cells by amino acid transporters, making it an ideal agent for BNCT. In this study, we investigated whether the amino acid 5-aminolevulinic acid (ALA) could sensitize glioma stem cells (GSCs) to BNCT by enhancing the uptake of BPA.
View Article and Find Full Text PDFCellular differentiation is characterized by changes in cell morphology that are largely determined by actin dynamics. We previously showed that depolymerization of the actin cytoskeleton triggers the differentiation of preadipocytes into mature adipocytes as a result of inhibition of the transcriptional coactivator activity of megakaryoblastic leukemia 1 (MKL1). The extracellular matrix (ECM) influences cell morphology via interaction with integrins, and reorganization of the ECM is associated with cell differentiation.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common and lethal type of malignant primary brain tumor in adults. GBM displays heterogeneous tumor cell population comprising glioma-initiating cells (GICs) with stem cell-like characteristics and differentiated glioma cells. During GBM cell invasion into normal brain tissues, which is the hallmark characteristic of GBM, GICs at the invasion front retain stemness, while cells at the tumor core display cellular differentiation.
View Article and Find Full Text PDFGlioblastoma (GBM) has high mortality rates because of extreme therapeutic resistance. During surgical resection for GBM, 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence is conventionally applied to distinguish GBM. However, surgical intervention is insufficient for high invasive GBM.
View Article and Find Full Text PDFFast-growing tumors satisfy their bioenergetic needs by supplementing glucose with alternative carbon sources. Cancer stem cells are the most versatile and robust cells within malignant tumors. They avoid potentially lethal metabolic and other types of stress through flexible reprogramming of relevant pathways, but it has remained unclear whether alternative carbon sources are important for the maintenance of their tumor-propagating ability.
View Article and Find Full Text PDFGlioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common and lethal type of malignant brain tumor. A deeper mechanistic understanding of the invasion of heterogeneous GBM cell populations is crucial to develop therapeutic strategies. A key regulator of GBM cell invasion is interstitial flow.
View Article and Find Full Text PDFUnder hypoxic conditions, nitroimidazoles can replace oxygen as electron acceptors, thereby enhancing the effects of radiation on malignant cells. These compounds also accumulate in hypoxic cells, where they can act as cytotoxins or imaging agents. However, whether these effects apply to cancer stem cells has not been sufficiently explored.
View Article and Find Full Text PDFImidazole antifungal compounds exert their antipathogenic effects through inhibition of sterol biosynthesis. These drugs have also recently been identified as candidate anticancer agents for several solid tumors including glioblastoma. However, their effects on glioma-initiating cells (GICs), i.
View Article and Find Full Text PDFBackground: Antitumor therapies targeting programmed cell death-1 (PD-1) or its ligand-1 (PD-L1) are used in various cancers. However, in glioblastoma (GBM), the expression of PD-L1 varies between patients, and the relationship between this variation and the efficacy of anti-PD-1 antibody therapy remains unclear. High expression levels of PD-L1 affect the proliferation and invasiveness of GBM cells.
View Article and Find Full Text PDFInhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the family of statins have been suggested as therapeutic options in various tumors. Atorvastatin is a statin with the potential to cross the blood-brain barrier; however, the concentrations necessary for a cytotoxic effect against cancer cells exceed the concentrations achievable via oral administration, which made the development of a novel atorvastatin formulation necessary. We characterized the drug loading and basic physicochemical characteristics of micellar atorvastatin formulations and tested their cytotoxicity against a panel of different glioblastoma cell lines.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFGliomas are the second most common primary brain tumors in adults. They are treated with combination therapies, including surgery, radiotherapy, and chemotherapy. There are currently limited treatment options for recurrent gliomas, and new targeted therapies need to be identified, especially in glioblastomas, which have poor prognosis.
View Article and Find Full Text PDFIn many cancers, high proliferation rates correlate with elevation of rRNA and tRNA levels, and nucleolar hypertrophy. However, the underlying mechanisms linking increased nucleolar transcription and tumorigenesis are only minimally understood. Here we show that IMP dehydrogenase-2 (IMPDH2), the rate-limiting enzyme for de novo guanine nucleotide biosynthesis, is overexpressed in the highly lethal brain cancer glioblastoma.
View Article and Find Full Text PDFGlioblastoma exhibits phenotypic and genetic heterogeneity, aggressive invasiveness, therapeutic resistance, and tumor recurrence, which can be explained by the existence of glioma stem cells (GSCs). In this study, we visualized the spatiotemporal dynamics of invasion of human GSCs in an orthotopic xenograft mouse model using time-lapse imaging of organotypic brain slice cultures and three-dimensional imaging of optically cleared whole brains. GSCs implanted in the striatum exhibited directional migration toward axon bundles, perivascular area, and the subventricular zone around the inferior horn of the lateral ventricle.
View Article and Find Full Text PDFAutocrine and paracrine factors, including glutamate and epidermal growth factor (EGF), are potent inducers of brain tumor cell invasion, a pathological hallmark of malignant gliomas. System xc(-) consists of xCT and CD98hc subunits and functions as a plasma membrane antiporter for the uptake of extracellular cystine in exchange for intracellular glutamate. We previously showed that the EGF receptor (EGFR) interacts with xCT and thereby promotes the activity of system xc(-) in a kinase-independent manner, resulting in enhanced glutamate release in glioma cells.
View Article and Find Full Text PDFIntratumoral human epidermal growth factor receptor 2 (HER2) heterogeneity has been reported in 16⁻36% of HER2-positive breast cancer and its clinical impact is under discussion. We examined the biological effects of HER2-heterogeneity on mouse models and analyzed metastatic brains by RNA sequence analysis. A metastatic mouse model was developed using 231-Luc (triple negative cells) and 2 HER2-positive cell lines, namely, HER2-60 and HER2-90 which showed heterogeneous and monotonous HER2 expressions, respectively.
View Article and Find Full Text PDFGold deposition with diagonal angle towards boehmite-based nanostructure creates random arrays of horse-bean-shaped nanostructures named gold-nanofève (GNF). GNF generates many electromagnetic hotspots as surface-enhanced Raman spectroscopy (SERS) excitation sources, and enables large-area visualization of molecular vibration fingerprints of metabolites in human cancer xenografts in livers of immunodeficient mice with sufficient sensitivity and uniformity. Differential screening of GNF-SERS signals in tumours and those in parenchyma demarcated tumour boundaries in liver tissues.
View Article and Find Full Text PDF