Publications by authors named "Sampayo R"

During the intricate process by which cells give rise to tissues, embryonic and adult stem cells are exposed to diverse mechanical signals from the extracellular matrix (ECM) that influence their fate. Cells can sense these cues in part through dynamic generation of protrusions, modulated and controlled by cyclic activation of Rho GTPases. However, it remains unclear how extracellular mechanical signals regulate Rho GTPase activation dynamics and how such rapid, transient activation dynamics are integrated to yield long-term, irreversible cell fate decisions.

View Article and Find Full Text PDF

The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed.

View Article and Find Full Text PDF

To investigate the role of PR isoforms on the homeostasis of stem cells in the normal and neoplastic mammary gland, we used PRA and PRB transgenic mice and the T47D human breast cancer cell line and its derivatives, T47D YA and YB (manipulated to express only PRA or PRB, respectively). Flow cytometry and mammosphere assays revealed that in murine breast, overexpression of PRB leads to an increase in luminal and basal progenitor/stem cells. Ovariectomy had a negative impact on the luminal compartment and induced an increase in mammosphere-forming capacity in cells derived from WT and PRA mice only.

View Article and Find Full Text PDF

This study is aimed at analysing the effect of vacuum frying on the kinetic parameters of mass transfer, the CIE colour parameters of the Carimañola. For the kinetic analysis, the moisture and oil content were measured by means of an experimental design consisting of two factors: frying time with seven levels (60, 120, 180, 240, 300, 420, and 540 s) and frying temperature with three levels (120, 130, and 140°C). The diffusivity coefficient, the moisture transfer rate, and the oil adsorption rate, with their respective activation energies, were calculated.

View Article and Find Full Text PDF

Transcription factors (TFs) are potent proteins that control gene expression and can thereby drive cell fate decisions. Fluorescent reporters have been broadly knocked into endogenous TF loci to investigate the biological roles of these factors; however, the sensitivity of such analyses in human pluripotent stem cells (hPSCs) is often compromised by low TF expression levels and/or reporter silencing. Complementarily, we report an inducible and quantitative reporter platform based on the Cre-LoxP recombination system that enables robust, quantifiable, and continuous monitoring of live hPSCs and their progeny to investigate the roles of TFs during human development and disease.

View Article and Find Full Text PDF

Since the introduction of the cancer stem cell (CSC) hypothesis, accumulating evidence shows that most cancers present stem-like niches. However, therapies aimed at targeting this niche have not been as successful as expected. New evidence regarding CSCs hierarchy, similarities with normal tissue stem cells and cell plasticity might be key in understanding their role in cancer biology and how to efficiently eliminate them.

View Article and Find Full Text PDF

Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general.

View Article and Find Full Text PDF

Angiotensin (Ang) II, the main effector peptide of the renin-angiotensin system, has been implicated in multiple aspects of cancer progression such as proliferation, migration, invasion, angiogenesis and metastasis. Ang-(1-7), is a biologically active heptapeptide, generated predominantly from AngII by the enzymatic activity of angiotensin converting enzyme 2. Previous studies have shown that Ang-(1-7) counterbalances AngII actions in different pathophysiological settings.

View Article and Find Full Text PDF

Purpose: To evaluate the aesthetic and functional outcomes of autologous fat transfer using the SEFFI (superficial enhanced fluid fat injection) technique for reconstruction of the periocular area.

Methods: Autologous fat injections prepared with the 0.5 mL and 0.

View Article and Find Full Text PDF

ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a non-thermal technique for inducing tumor damage following administration of a light-activated photosensitizing drug (PS). In a previous work we found that PDT induces cytoskeleton changes in HB4a-Ras cells (human mammary breast carcinoma HB4a cells transfected with the RAS oncogene). In the present work we have studied the migratory and invasive features and the expression of proteins related to these processes on HB4a-Ras cells after three successive cycles of PDT using different PSs: 5-aminolevulinic acid (ALA), Verteporfin (Verte), m-tetrahydroxyphenylchlorin (m-THPC), and Merocyanine 540 (MC).

View Article and Find Full Text PDF

Breast cancer affects one in eight women around the world. Seventy five percent of these patients have tumors that are estrogen receptor positive and as a consequence receive endocrine therapy. However, about one third eventually develop resistance and cancer reappears.

View Article and Find Full Text PDF

Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER(+)) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized.

View Article and Find Full Text PDF

Progesterone receptor (PR) belongs to the superfamily of steroid receptors and mediates the action of progesterone in its target tissues. In the mammary gland, in particular, PR expression is restricted to the luminal epithelial cell compartment. The generation of estrogen receptor-α (ER) and PR knockout mice allowed the specific characterization of the roles of each of these in mammary gland development: ER is critical for ductal morphogenesis, whereas PR has a key role in lobuloalveolar differentiation.

View Article and Find Full Text PDF

Tamoxifen resistance has been largely attributed to genetic alterations in the epithelial tumor cells themselves, such as overexpression of HER-2/Neu. However, in the clinic, only about 15-20% of cases of HER-2/Neu amplification has actually been correlated to the acquisition of endocrine resistance, suggesting that other mechanisms must be involved as well. Using the epithelial LM05-E and the fibroblastic LM05-F cell lines, derived from the estrogen dependent spontaneous M05 mouse mammary tumor, as well as MCF-7 cells, we analyzed whether soluble stromal factors or extracellular matrix components protected against tamoxifen induced cell death.

View Article and Find Full Text PDF

Acute attacks of porphyria are most commonly precipitated by events that decrease heme concentrations. Enzyme inducing-drugs are the most important triggering factors, particularly in relation to anaesthesia. We have reported previously that Enflurane and Isoflurane produced significant heme metabolism alterations, indicating that the use of these anaesthetics in porphyric patients should be avoided.

View Article and Find Full Text PDF