Stress is a significant issue among students, affecting both their mental and physical health. In this study, we investigated cortisol levels, a key biomarker for stress, in students at the United Arab Emirates University (UAEU) during their exam period. Using a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology we measured cortisol concentrations in hair and saliva samples and explored the potential correlation between exam-induced stress and cortisol levels.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2025
Introduction: Numerous physiological systems, such as the functioning of the immune system, bone health, and the regulation of expression of genes, depend critically on vitamin D. Considering the significance of vitamin D for health, it is critical to understand how it is metabolized and the factors that affect its levels.
Methods: The objective of this study was to develop and validate an LC-MS/MS method to examine the effects of light exposure and dietary vitamin D consumption on the levels of vitamin D and its metabolites in a mouse model under consistent growth conditions throughout the year.
Introduction: Aloe vera is widely known for its therapeutic properties, but concerns regarding the levels of phytohormones and their potential impact on human health highlight the need for advanced analytical techniques. This study aims to develop and validate a sensitive method for the determination of six key phytohormones in Aloe vera using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS).
Methods: A validated LC-MS/MS method was optimized for the determination and quantification of six phytohormones in Aloe vera: Abscisic Acid (ABA), Salicylic Acid (SA), Indole-3-Acetic Acid (I3AA), Gibberellic Acid (GA), 6-Benzylaminopurine (6BAP), and Isopentenyladenine (ISA).
Salinity stress has detrimental effects on various aspects of plant development. However, our understanding of strategies to mitigate these effects in crop plants remains limited. Recent research has shed light on the potential of sodium acetate as a mitigating component against salinity stress in several plant species.
View Article and Find Full Text PDF