Publications by authors named "Samolski I"

Bioeconomy goals for using biomass feedstock for biofuels and bio-based production has arisen the demand for fungal strains and enzymes for biomass processing. Despite well-known Trichoderma and Aspergillus commercial strains, continuous bioprospecting has revealed the fungal biodiversity potential for production of biomass degrading enzymes. The strain Aspergillus fumigatus LMB-35Aa has revealed a great potential as source of lignocellulose-degrading enzymes.

View Article and Find Full Text PDF

Although synthetic colorants are widely used in many industries due to their high stability at different conditions in industrial processes, evidence of its negative impact on health and the environment is undeniable. Filamentous fungi are well known for their use as alternative sources to produce natural pigments. However, an adequate comparison of the productivity parameters between the fermentation systems could be limited to their heterogeneous conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Kelp, a type of brown algae, is crucial for marine ecosystems and is commercially valuable.
  • The complete genome sequence of the largest kelp has been sequenced, revealing it has a size of about 428 Mb, with 44,307 scaffolds and 24,778 predicted genes.
  • Phylogenetic analysis showed that a certain littoral brown seaweed is the closest relative, and many identified genes in the kelp's genome are linked to processes like genetic information handling and carbohydrate metabolism.
View Article and Find Full Text PDF

LMB-35Aa, a saprophytic fungus, was used for cellulase production through biofilms cultures. Since biofilms usually favor virulence in clinical strains, the expression of the related genes of the LMB 35-Aa strain was analyzed by qPCR from the biomass of planktonic cultures and biofilms developed on polyester cloth and polystyrene microplates. For this, virulence-related genes reported for the clinical strain Af293 were searched in LMB 35-Aa genome, and 15 genes were identified including those for the synthesis of cell wall components, hydrophobins, invasins, efflux transporters, mycotoxins and regulators.

View Article and Find Full Text PDF

The Trichoderma harzianum qid74 gene encodes a cysteine-rich cell wall protein that has an important role in adherence to hydrophobic surfaces and cellular protection; this gene was upregulated in Trichoderma high-density oligonucleotide (HDO) microarrays in interaction with tomato roots. Using a collection of qid74-overexpressing and disrupted mutants the role of this gene in cucumber and tomato root architecture was analysed in hydroponic and soil systems under greenhouse conditions. No significant differences were found in the pattern of root colonization and the length of primary roots of cucumber or tomato plants inoculated by T.

View Article and Find Full Text PDF

Background: It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO) microarray encompassing 14,081 Expressed Sequence Tag (EST)-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T.

View Article and Find Full Text PDF

Responses to prolonged drought and recovery from drought of two South American potato (Solanum tuberosum L. ssp. andigena (Juz & Buk) Hawkes) landraces, Sullu and Ccompis were compared under field conditions.

View Article and Find Full Text PDF