Publications by authors named "Samo Mahnic-Kalamiza"

Pulsed electric field (PEF) technology has found applications in various industrial food sectors, including the potato industry, winemaking, biorefinery, and juice extraction, among others. The practical implementation of PEF technology in the food industry is however still hindered by several challenges. The detection and quantification of PEF effects are complex due to the variable characteristics and properties of raw materials, including cellular composition, structural organization, textural properties, and tissue porosity.

View Article and Find Full Text PDF

Objective: The goal of our study was to determine the importance of electric field orientation in an anisotropic muscle tissue for the extent of irreversible electroporation damage by means of an experimentally validated mathematical model.

Methods: Electrical pulses were delivered to porcine skeletal muscle in vivo by inserting needle electrodes so that the electric field was applied in direction either parallel or perpendicular to the direction of the muscle fibres. Triphenyl tetrazolium chloride staining was used to determine the shape of the lesions.

View Article and Find Full Text PDF

Background: Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments.

View Article and Find Full Text PDF

Electroporation is a method of treatment of plant tissue that due to its nonthermal nature enables preservation of the natural quality, colour and vitamin composition of food products. The range of processes where electroporation was shown to preserve quality, increase extract yield or optimize energy input into the process is overwhelming, though not exhausted; e.g.

View Article and Find Full Text PDF

In many electroporation applications mass transport in biological tissue is of primary concern. This paper presents a theoretical advancement in the field and gives some examples of model use in electroporation applications. The study focuses on post-treatment solute diffusion.

View Article and Find Full Text PDF

Background: Electrochemotherapy is a local treatment that utilizes electric pulses in order to achieve local increase in cytotoxicity of some anticancer drugs. The success of this treatment is highly dependent on parameters such as tissue electrical properties, applied voltages and spatial relations in placement of electrodes that are used to establish a cell-permeabilizing electric field in target tissue. Non-thermal irreversible electroporation techniques for ablation of tissue depend similarly on these parameters.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8u0vor5oe9ttadf8t80v25spl194q2gr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once