Publications by authors named "Samoĭlova R"

We report the synthesis and comprehensive characterization of organic-inorganic hybrid salts formed by bis-cationic bis(2-(trimethylammonium)ethylene)perylene-3,4,9,10-tetracarboxylic acid bisimide (PTCD) and Keggin-type [XWO] (X = Si, = 4; X = P, = 3) polyoxometalates. (PTCD)[PWO]·3DMSO·2HO () and (PTCD)[SiWO]·DMSO·2HO () were structurally characterized by single crystal X-ray diffraction. The cations in both structures exhibited infinite chainlike arrangements through π-π interactions, contrasting with the previously reported cation-anion stacking observed in naphthalene diimide derivatives.

View Article and Find Full Text PDF

Thermally resistant air-stable organic triradicals with a quartet ground state and a large energy gap between spin states are still unique compounds. In this work, we succeeded to design and prepare the first highly stable triradical, consisting of oxoverdazyl and nitronyl nitroxide radical fragments, with a quartet ground state. The triradical and its diradical precursor were synthesized via a palladium-catalyzed cross-coupling reaction of diiodoverdazyl with nitronyl nitroxide-2-ide gold(I) complex.

View Article and Find Full Text PDF

In frozen biological media and molecular glasses only restricted motions exist; because of the weakness and disorder of intermolecular bonds these motions may have stochastic nature. Electron spin echo (ESE) spectroscopy of spin-labeled molecules allows detecting their restricted stochastic rotations (stochastic molecular librations). As in molecular disordered media motions may be highly cooperative, it would be desirable to investigate their spectroscopic manifestation also in the systems where cooperative effects would be certainly ruled out.

View Article and Find Full Text PDF

Mitochondria-targeted antioxidants (also known as 'Skulachev Ions' electrophoretically accumulated by mitochondria) exert anti-ageing and ROS-protecting effects well documented in animal and human cells. However, their effects on chloroplast in photosynthetic cells and corresponding mechanisms are scarcely known. For the first time, we describe a dramatic quenching effect of (10-(6-plastoquinonyl)decyl triphenylphosphonium (SkQ1) on chlorophyll fluorescence, apparently mediated by redox interaction of SkQ1 with Mn cluster in Photosystem II (PSII) of chlorophyte microalga Chlorella vulgaris and disabling the oxygen-evolving complex (OEC).

View Article and Find Full Text PDF

Cytochrome aa3-600 is a terminal oxidase in the electron transport pathway that contributes to the electrochemical membrane potential by actively pumping protons. A notable feature of this enzyme complex is that it uses menaquinol as its electron donor instead of cytochrome c when it reduces dioxygen to water. The enzyme stabilizes a menasemiquinone radical (SQ) at a high affinity site that is important for catalysis.

View Article and Find Full Text PDF

Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe (13)C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with l-methionine with the side chain methyl group (13)C-labeled. Two-dimensional electron spin echo envelope modulation (HYSCORE) was applied to study the (13)C methyl and methoxy hyperfine couplings in the semiquinone generated in situ at the Qi site of the bc1 complex in its membrane environment.

View Article and Find Full Text PDF

The PELDOR technique was used to obtain the spectra of distances between spin labels for mono and double TOAC substituted analogues of [Glu(OMe)(7,18,19)] alamethicin F50/5 (Alm') peptaibiotic on the surface of the organic sorbent Oasis HLB and in ethanol solution at 77 K. For the double-labeled Alm', the free radical probes are at positions 1 and 16 (Alm'1,16). The intra- and intermolecular contributions to the PELDOR time traces were separated, with regard to the fractality of the system studied.

View Article and Find Full Text PDF

In the Q(B) site of the Rhodobacter sphaeroides photosynthetic reaction center, the donation of a hydrogen bond from the hydroxyl group of Ser-L223 to the ubisemiquinone formed after the first flash is debatable. In this study, we use a combination of spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations to comprehensively explore this topic. We show that ENDOR, ESEEM, and HYSCORE spectroscopic differences between mutant L223SA and the wild-type sample (WT) are negligible, indicating only minor perturbations in the ubisemiquinone spin density for the mutant sample.

View Article and Find Full Text PDF

Selective (15)N isotope labeling of the cytochrome bo(3) ubiquinol oxidase from Escherichia coli with auxotrophs was used to characterize the hyperfine couplings with the side-chain nitrogens from residues R71, H98, and Q101 and peptide nitrogens from residues R71 and H98 around the semiquinone (SQ) at the high-affinity Q(H) site. The two-dimensional ESEEM (HYSCORE) data have directly identified N(ε) of R71 as an H-bond donor carrying the largest amount of unpaired spin density. In addition, weaker hyperfine couplings with the side-chain nitrogens from all residues around the SQ were determined.

View Article and Find Full Text PDF

Amino-acid selective isotope labeling of proteins offers numerous advantages in mechanistic studies by revealing structural and functional information unattainable from a crystallographic approach. However, efficient labeling of proteins with selected amino acids necessitates auxotrophic hosts, which are often not available. We have constructed a set of auxotrophs in a commonly used Escherichia coli expression strain C43(DE3), a derivative of E.

View Article and Find Full Text PDF

When the superoxide radical O(2)(•-) is generated on reaction of KO(2) with water in dimethyl sulfoxide, the decay of the radical is dramatically accelerated by inclusion of quinones in the reaction mix. For quinones with no or short hydrophobic tails, the radical product is a semiquinone at much lower yield, likely indicating reduction of quinone by superoxide and loss of most of the semiquinone product by disproportionation. In the presence of ubiquinone-10, a different species (I) is generated, which has the EPR spectrum of superoxide radical.

View Article and Find Full Text PDF

Aim: To ascertain indications to standard (CHOP-21/R-CHOP-21) and intensive (mNHL-BFM-90) treatment in patients with diffuse large B-cell lymphosarcoma (DLBCL) with involvement of lymphoid organs.

Material And Methods: The trial, performed from January 2002 to December 2010, enrolled 139 DLBCL patients with affected lymph nodes (LN), tonsils, spleen, bone marrow (BM). The diagnosis was made according to WHO criteria.

View Article and Find Full Text PDF

Enzymatic N(2) reduction proceeds along a reaction pathway composed of a sequence of intermediate states generated as a dinitrogen bound to the active-site iron-molybdenum cofactor (FeMo-co) of the nitrogenase MoFe protein undergoes six steps of hydrogenation (e(-)/H(+) delivery). There are two competing proposals for the reaction pathway, and they invoke different intermediates. In the 'Distal' (D) pathway, a single N of N(2) is hydrogenated in three steps until the first NH(3) is liberated, and then the remaining nitrido-N is hydrogenated three more times to yield the second NH(3).

View Article and Find Full Text PDF

In the photosynthetic reaction center from Rhodobacter sphaeroides, the primary (Q(A)) and secondary (Q(B)) electron acceptors are both ubiquinone-10, but with very different properties and functions. To investigate the protein environment that imparts these functional differences, we have applied X-band HYSCORE, a 2D pulsed EPR technique, to characterize the exchangeable protons around the semiquinone (SQ) in the Q(A) and Q(B) sites, using samples of (15)N-labeled reaction centers, with the native high spin Fe(2+) exchanged for diamagnetic Zn(2+), prepared in (1)H(2)O and (2)H(2)O solvent. The powder HYSCORE method is first validated against the orientation-selected Q-band ENDOR study of the Q(A) SQ by Flores et al.

View Article and Find Full Text PDF

Immunocytochemical staining with specific antibodies was used to study the expression of three nucleolar proteins (fibrillarin, B23/nucleofozmin, and SURF6), which were involved in pRNA maturation, in the lymphoid cells of healthy individuals and patients with lymphoproliferative diseases and to compare it with the expression of the known proliferation marker Ki-67 protein. The results indicated that fibrillarin was detectable at the comparable level in the lymphoid cells of the patients and in the peripheral blood lymphocytes of the healthy individuals. In one fourth of the patients, the proportion of cells containing B23/nucleofozmin was noticeably higher than that in the lymphocytes of donors; however, there was no great difference in patients with different types of the disease.

View Article and Find Full Text PDF

The cytochrome bo(3) ubiquinol oxidase from Escherichia coli resides in the bacterial cytoplasmic membrane and catalyzes the two-electron oxidation of ubiquinol-8 and four-electron reduction of O(2) to water. The one-electron reduced semiquinone forms transiently during the reaction, and the enzyme has been demonstrated to stabilize the semiquinone. The semiquinone is also formed in the D75E mutant, where the mutation has little influence on the catalytic activity, and in the D75H mutant, which is virtually inactive.

View Article and Find Full Text PDF

Aim: To diagnose diffuse large B-cell lymphosarcoma (DLBCLS) with primary involvement of the mediastinal lymph nodes (LN) and to evaluate the efficiency of aggressive polychemotherapy (PCT).

Subjects And Methods: The study included 15 patients (6 men and 9 women aged 18 to 70 years; median 38 years) followed up at the Hematology Research Center, Russian Academy of Medical Sciences, in 2004 to 2009. Three and 12 patients had Stages II and IE DLBCLS, respectively.

View Article and Find Full Text PDF

Photosynthetic reaction centers from Rhodobacter sphaeroides have identical ubiquinone-10 molecules functioning as primary (Q(A)) and secondary (Q(B)) electron acceptors. X-band 2D pulsed EPR spectroscopy, called HYSCORE, was applied to study the interaction of the Q(B) site semiquinone with nitrogens from the local protein environment in natural and (15)N uniformly labeled reactions centers. (14)N and (15)N HYSCORE spectra of the Q(B) semiquinone show the interaction with two nitrogens carrying transferred unpaired spin density.

View Article and Find Full Text PDF

Cytochrome bo(3) is the major respiratory oxidase located in the cytoplasmic membrane of Escherichia coli when grown under high oxygen tension. The enzyme catalyzes the 2-electron oxidation of ubiquinol-8 and the 4-electron reduction of dioxygen to water. When solubilized and isolated using dodecylmaltoside, the enzyme contains one equivalent of ubiquinone-8, bound at a high affinity site (Q(H)).

View Article and Find Full Text PDF

Cytochrome aa(3)-600 is one of the principle respiratory oxidases from Bacillus subtilis and is a member of the heme-copper superfamily of oxygen reductases. This enzyme catalyzes the two-electron oxidation of menaquinol and the four-electron reduction of O(2) to 2H(2)O. Cytochrome aa(3)-600 is of interest because it is a very close homologue of the cytochrome bo(3) ubiquinol oxidase from Escherichia coli, except that it uses menaquinol instead of ubiquinol as a substrate.

View Article and Find Full Text PDF

Two-dimensional electron spin-echo envelope modulation (ESEEM) analysis of the uniformly (15)N-labeled archaeal Rieske-type [2Fe-2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 has been conducted in comparison with the previously characterized high-potential protein homologs. Major differences among these proteins were found in the hyperfine sublevel correlation (HYSCORE) lineshapes and intensities of the signals in the (++) quadrant, which are contributed from weakly coupled (non-coordinated) peptide nitrogens near the reduced clusters. They are less pronounced in the HYSCORE spectra of ARF than those of the high-potential protein homologs, and may account for the tuning of Rieske-type clusters in various redox systems.

View Article and Find Full Text PDF

CW EPR spectra of reduced [2Fe-2S](Cys)(3)(His)(1) clusters of mammalian mitoNEET soluble domain appear to produce features resulting from the interaction of the electron spins of the two adjacent clusters, which can be explained by employing the local spin model. This model favors the reduction of the outermost iron with His87 and Cys83 ligands, which is supported by orientation-selected hyperfine sublevel correlation (HYSCORE) characterization of the uniformly (15)N-labeled mitoNEET showing one strongly coupled nitrogen from the His87 N(delta) ligand with hyperfine coupling (15)a = 8 MHz. The (14)N and (15)N HYSCORE spectra also exhibit at least two different cross-peaks located near diagonal in the (++) quadrant, with frequencies approximately 2.

View Article and Find Full Text PDF

DNA fragments were synthesized consisting of 12 nucleotides and containing non-nucleotide inserts of different length in the middle. Two nitroxide spin labels 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl were attached at the two ends of the molecules. Single-stranded DNAs and double-stranded DNAs (DNA duplexes) in frozen at 77 K glassy water/glycerol solutions were studied using pulsed electron-electron double resonance (PELDOR).

View Article and Find Full Text PDF

We have used X-band ESEEM to study the reduced [2Fe-2S] cluster in adrenodoxin and Arthrospira platensis ferredoxin. By use of a 2D approach (HYSCORE), we have shown that the cluster is involved in weak magnetic interactions with several nitrogens in each protein. Despite substantial differences in the shape and orientational dependence of individual cross-peaks, the major spectral features in both proteins are attributable to two peptide nitrogens (N1 and N2) with similar hyperfine couplings approximately 1.

View Article and Find Full Text PDF