Regenerative medicine approaches for massive craniomaxillofacial (CMF) bone defects face challenges associated with the scale of missing bone, the need for rapid graft-defect integration, and challenges related to inflammation and infection. Mineralized collagen scaffolds have been shown to promote mesenchymal stem cell osteogenesis due to their porous nature and material properties, but are mechanically weak, limiting surgical practicality. Previously, these scaffolds were combined with 3D-printed polycaprolactone (PCL) mesh to form a scaffold-mesh composite to increase strength and promote bone formation in sub-critical sized porcine ramus defects.
View Article and Find Full Text PDFA tissue engineering approach to address craniofacial defects requires a biomaterial that balances macro-scale mechanical stiffness and strength with the micron-scale features that promote cell expansion and tissue biosynthesis. Such criteria are often in opposition, leading to suboptimal mechanical competence or bioactivity. We report the use of a multiscale composite biomaterial that integrates a polycaprolactone (PCL) reinforcement structure with a mineralized collagen-glycosaminoglycan scaffold to circumvent conventional tradeoffs between mechanics and bioactivity.
View Article and Find Full Text PDF